Why Delannoy numbers?

被引:86
|
作者
Banderier, C [1 ]
Schwer, S [1 ]
机构
[1] Univ Paris 13, LIPN, UMR 7030, F-93430 Villetaneuse, France
关键词
lattice paths enumeration; ballot problems;
D O I
10.1016/j.jspi.2005.02.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article is not a research paper, but a little note on the history of combinatories: we present here a tentative short biography of Henri Delannoy, and a survey of his most notable works,This answers, the question raised in the title, as these works are related to lattice paths enumeration to the so-called Delannoy numbers, and were the first general way to solve Ballot-like problems. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:40 / 54
页数:15
相关论文
共 50 条
  • [41] Factorization of Delannoy matrices
    Brawer, Robert
    ELEMENTE DER MATHEMATIK, 2021, 76 (04) : 178 - 181
  • [42] 'BERNADETTE' - DELANNOY,J
    MAGNY, J
    CAHIERS DU CINEMA, 1988, (405): : 49 - 49
  • [43] 'BERNADETTE' - DELANNOY,J
    LEFEVRE, R
    REVUE DU CINEMA, 1988, (436): : 27 - 28
  • [44] WHY CAN'T THERE BE NUMBERS?
    Builes, David
    PHILOSOPHICAL QUARTERLY, 2022, 72 (01): : 65 - 76
  • [45] Why Numbers Are Embodied Concepts
    Fischer, Martin H.
    FRONTIERS IN PSYCHOLOGY, 2018, 8
  • [46] Knowing the numbers or knowing why?
    Roislien, Jo
    Froslie, Kathrine Frey
    TIDSSKRIFT FOR DEN NORSKE LAEGEFORENING, 2018, 138 (09) : 846 - 846
  • [47] Why Can't There Be Numbers?
    Builes, David
    PHILOSOPHICAL QUARTERLY, 2021, 72 (01): : 65 - 76
  • [48] Lattice of Delannoy paths
    Autebert, JM
    Latapy, M
    Schwer, SR
    DISCRETE MATHEMATICS, 2002, 258 (1-3) : 225 - 234
  • [49] Schroder matrix as inverse of Delannoy matrix
    Yang, Sheng-liang
    Zheng, Sai-nan
    Yuan, Shao-peng
    He, Tian-Xiao
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (11) : 3605 - 3614
  • [50] FLORY,ISABELLE AND DELANNOY,JACQUES
    MIKOLAJSKI, A
    STRAD, 1983, 93 (1115): : 769 - 769