Constrained clusterwise linear regression

被引:2
|
作者
Plaia, A [1 ]
机构
[1] Univ Palermo, Dipartimento Sci Stat & Matemat S Vianelli, Palermo, Italy
关键词
D O I
10.1007/3-540-27373-5_10
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In market segmentation, Conjoint Analysis is often used to estimate the importance of a product attributes at the level of each single customer, clustering, successively, the customers whose behavior can be considered similar. The preference model parameter estimation is made considering data (usually opinions) of a single customer at a time, but these data are usually very few as each customer is called to express his opinion about a small number of different products (in order to simplify his/her work). In the present paper a Constrained Clusterwise Linear Regression algorithm is presented, that allows simultaneously to estimate parameters and to cluster customers, using, for the estimation, the data of all the customers with similar behavior.
引用
收藏
页码:79 / 86
页数:8
相关论文
共 50 条
  • [41] SOMwise regression: a new clusterwise regression method
    Muruzabal, Jorge
    Vidaurre, Diego
    Sanchez, Julian
    NEURAL COMPUTING & APPLICATIONS, 2012, 21 (06): : 1229 - 1241
  • [42] Nonsmooth DC programming approach to clusterwise linear regression: optimality conditions and algorithms
    Bagirov, A. M.
    Ugon, J.
    OPTIMIZATION METHODS & SOFTWARE, 2018, 33 (01): : 194 - 219
  • [43] Covariance matrix estimation of the maximum likelihood estimator in multivariate clusterwise linear regression
    Giuliano Galimberti
    Lorenzo Nuzzi
    Gabriele Soffritti
    Statistical Methods & Applications, 2021, 30 : 235 - 268
  • [44] Covariance matrix estimation of the maximum likelihood estimator in multivariate clusterwise linear regression
    Galimberti, Giuliano
    Nuzzi, Lorenzo
    Soffritti, Gabriele
    STATISTICAL METHODS AND APPLICATIONS, 2021, 30 (01): : 235 - 268
  • [45] Prediction for regularized clusterwise multiblock regression
    Bougeard, S.
    Cariou, V.
    Saporta, G.
    Niang, N.
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2018, 34 (06) : 852 - 867
  • [46] Regularized fuzzy clusterwise ridge regression
    Hye Won Suk
    Heungsun Hwang
    Advances in Data Analysis and Classification, 2010, 4 : 35 - 51
  • [47] Clusterwise Regression Using Dirichlet Mixtures
    Kang, Changku
    Ghosal, Subhashis
    ADVANCES IN MULTIVARIATE STATISTICAL METHODS, 2009, 4 : 305 - +
  • [48] LASSO-penalized clusterwise linear regression modelling: a two-step approach
    Di Mari, Roberto
    Rocci, Roberto
    Gattone, Stefano Antonio
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (18) : 3235 - 3258
  • [49] On Combining Clusterwise Linear Regression and K-Means with Automatic Weighting of the Explanatory Variables
    da Silva, Ricardo A. M.
    de Carvalho, Francisco de A. T.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 : 402 - 410
  • [50] A Constrained Linear Estimator for Multiple Regression
    Clintin P. Davis-Stober
    Jason Dana
    David V. Budescu
    Psychometrika, 2010, 75 : 521 - 541