Effectiveness of the Self-Consistent Harmonic Approximation in ferromagnets with dipolar interactions

被引:1
|
作者
Moura, A. R. [1 ]
机构
[1] Univ Fed Vicosa, Dept Fis, BR-36570900 Vicosa, MG, Brazil
关键词
Dipolar interaction; Self-Consistent Harmonic Approximation; Magnetism; Europium chalcogenides; KOSTERLITZ-THOULESS TRANSITION; QUANTUM-PHASE-TRANSITION; NEUTRON-SCATTERING; HEISENBERG-MODEL; SPIN DYNAMICS; XY MODEL; PLANE; TEMPERATURE; EUO; MAGNETIZATION;
D O I
10.1016/j.jmmm.2022.169778
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Among the various methods for treating magnetic models, the Self-Consistent Harmonic Approximation (SCHA) has successfully described ferro and antiferromagnetism in many different scenarios. In particular, the SCHA is a valuable and easy formalism for determining transition temperatures as, for example, the Berezinskii-Kosterlitz-Thouless. The heart of the method includes thermal fluctuations through of a renormalization parameter depending on temperature. Nevertheless, most of the work has been done considering only short-range interactions, which results in an incomplete description of actual magnetic samples. Here, we generalize the SCHA to include the dipolar interaction in the thermodynamic analysis. The method is applied to analyze the well-known Europium Chalcogenides EuO and EuS. The SCHA results are in good agreement with the experimental measurements.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Quantum paraelectricity in the self-consistent phonon approximation
    Prosandeev, SA
    Kleemann, W
    Dec, J
    INTEGRATED FERROELECTRICS, 2001, 32 (1-4) : 979 - 986
  • [32] SELF-CONSISTENT APPROXIMATION TO HUBBARD-MODEL
    ECONOMOU, EN
    WHITE, CT
    PHYSICAL REVIEW LETTERS, 1977, 38 (06) : 289 - 292
  • [33] Self-Consistent Approximation for Fluids and Lattice Gases
    D. Pini
    G. Stell
    J. S. Høye
    International Journal of Thermophysics, 1998, 19 : 1029 - 1038
  • [34] The self-consistent diagram approximation for lattice systems
    Bokun, GS
    Groda, YG
    Belov, VV
    Uebing, C
    Vikhrenko, VS
    EUROPEAN PHYSICAL JOURNAL B, 2000, 15 (02): : 297 - 304
  • [35] Self-consistent screening approximation for critical dynamics
    Campellone, M.
    Bouchaud, J.-P.
    Journal of Physics A: Mathematical and General, 30 (10):
  • [36] SELF-CONSISTENT RING APPROXIMATION IN QUANTUM HADRODYNAMICS
    BEDAU, C
    BECK, F
    NUCLEAR PHYSICS A, 1993, 560 (01) : 518 - 540
  • [37] Self-consistent ladder dynamical vertex approximation
    Kaufmann, Josef
    Eckhardt, Christian
    Pickem, Matthias
    Kitatani, Motoharu
    Kauch, Anna
    Held, Karsten
    PHYSICAL REVIEW B, 2021, 103 (03)
  • [38] Self-consistent approximation for fluids and lattice gases
    Department of Chemistry, State Univ. New York at Stony Brook, Stony Brook, NY 11794-3400, United States
    不详
    Int J Thermophys, 4 SPEC.ISS. (1029-1038):
  • [39] SELF-CONSISTENT FORM OF THE RANDOM PHASE APPROXIMATION
    ANTSYGINA, TN
    SLYUSAREV, VA
    SVIDZINSKII, AV
    THEORETICAL AND MATHEMATICAL PHYSICS, 1989, 81 (02) : 1215 - 1221
  • [40] Self-consistent screening approximation for critical dynamics
    Campellone, M
    Bouchaud, JP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (10): : 3333 - 3343