Computations of fatigue crack growth with strain gradient plasticity and an irreversible cohesive zone model

被引:22
|
作者
Brinckmann, Steffen [1 ]
Siegmund, Thomas [1 ]
机构
[1] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
关键词
strain gradient; plasticity; materials length scale; fatigue crack propagation; crack closure;
D O I
10.1016/j.engfracmech.2007.09.007
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Computations of fatigue crack growth with a first-order strain gradient plasticity (SGP) model and an irreversible cohesive zone model are reported. SGP plays a significant role in the model predictions and leads to increased fatigue crack growth rates relative to predictions with classical plasticity. Increased magnitudes of tractions and material separation at the crack tip together with reduced crack closure appear as the cause for accelerated crack growth in SGP. Under plane strain conditions SGP appears as an essential feature of the development of the crack closure zone. Size effects are explored relative to changes in internal material length scale as well as to structural length scales. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2276 / 2294
页数:19
相关论文
共 50 条
  • [21] Effect of strain-dependent cohesive zone model on predictions of crack growth resistance
    Technical Univ of Denmark, Lyngby, Denmark
    Int J Solids Struct, 20-22 (3297-3308):
  • [22] Effect of strain-dependent cohesive zone model on predictions of crack growth resistance
    Tvergaard, V
    Hutchinson, JW
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1996, 33 (20-22) : 3297 - 3308
  • [23] A cohesive zone model for fatigue crack growth allowing for crack retardation (vol 46, pg 2453, 2009)
    Ural, Ani
    Krishnan, Venkat R.
    Papoulia, Katerina D.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2009, 46 (18-19) : 3503 - 3503
  • [24] Numerical simulation of fatigue crack growth rate and crack retardation due to an overload using a cohesive zone model
    Silitonga, Sarmediran
    Maljaars, Johan
    Soetens, Frans
    Snijder, Hubertus H.
    11TH INTERNATIONAL FATIGUE CONGRESS, PTS 1 AND 2, 2014, 891-892 : 777 - +
  • [25] Cyclic cohesive zone model damage parameter acquisition for fatigue crack growth considering crack closure effect
    Wang, Rongqiao
    Liu, Yu
    Mao, Jianxing
    Liu, Zonghui
    Hu, Dianyin
    INTERNATIONAL JOURNAL OF FATIGUE, 2022, 163
  • [26] Modeling of the variability of fatigue crack growth using cohesive zone elements
    Beaurepaire, P.
    Schueller, G. I.
    ENGINEERING FRACTURE MECHANICS, 2011, 78 (12) : 2399 - 2413
  • [27] Numerical investigation on fatigue crack growth of fracturing pump head using cohesive zone model
    Wei, Chao
    Zhou, Sizhu
    Li, Meiqiu
    Zhang, Si
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2020, 107
  • [28] Cohesive zone model and GTN model collation for ductile crack growth
    Kozak, Vladislav
    Dlouhy, Ivo
    Chlup, Zdenek
    MATERIALS STRUCTURE & MICROMECHANICS OF FRACTURE V, 2008, 567-568 : 145 - 148
  • [29] Cohesive zone model and slow crack growth in ceramic polycrystals
    de la Osa, M. Romero
    Estevez, R.
    Olagnon, C.
    Chevalier, J.
    Vignoud, L.
    Tallaron, C.
    INTERNATIONAL JOURNAL OF FRACTURE, 2009, 158 (02) : 157 - 167
  • [30] Cohesive zone model and slow crack growth in ceramic polycrystals
    M. Romero de la Osa
    R. Estevez
    C. Olagnon
    J. Chevalier
    L. Vignoud
    C. Tallaron
    International Journal of Fracture, 2009, 158 : 157 - 167