MUSTFN: A spatiotemporal fusion method for multi-scale and multi-sensor remote sensing images based on a convolutional neural network

被引:14
|
作者
Qin, Peng [1 ,2 ]
Huang, Huabing [1 ,2 ,3 ,4 ]
Tang, Hailong [1 ,2 ]
Wang, Jie [3 ]
Liu, Chong [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Geospatial Engn & Sci, Zhuhai 519082, Peoples R China
[2] Southern Marine Sci & Engn Guangdong Lab Zhuhai, Zhuhai 519082, Peoples R China
[3] Peng Cheng Lab, Shenzhen 518066, Peoples R China
[4] Int Res Ctr Big Data Sustainable Dev Goals, Beijing, Peoples R China
基金
国家重点研发计划;
关键词
Spatiotemporal fusion; CNN; Multi-sensor satellite data; Large-area image fusion; Multi-scale fusion scenarios; SURFACE REFLECTANCE; CLOUD REMOVAL; SATELLITE IMAGES; LANDSAT; MODIS; SERIES; INDEX;
D O I
10.1016/j.jag.2022.103113
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Spatiotemporal data fusion is a commonly-used and well-proven technique to enhance the application potential of multi-source remote sensing images. However, most existing methods have trouble in generating quality fusion results when areas covered by the images undergoes rapid land cover changes or images have substantial registration errors. While deep learning algorithms have demonstrated their capabilities for imagery fusion, it is challenging to apply deep-learning-based fusion methods in regions that experiences persistent cloud covers and have limited cloud-free imagery observations. To address these challenges, we developed a Multi-scene Spatiotemporal Fusion Network (MUSTFN) algorithm based on a Convolutional Neural Network (CNN). Our approach uses multi-level features to fuse images at different resolutions acquired by multiple sensors. Furthermore, MUSTFN uses the multi-scale features to overcome the effects of geometric registration errors between different images. Additionally, a multi-constrained loss function is proposed to improve the accuracy of imagery fusion over large areas and solve fusion and gap-filling problems simultaneously by utilizing cloud-contaminated images with the fine-tuning method. Compared with several commonly-used methods, our pro-posed MUSTFN performs better in fusing the 30-m Landsat-7 images and 500-m MODIS images over a small area that has undergone large changes (the average relative Mean Absolute Errors (rMAE) of the first four bands are 6.8% by MUSTFN as compared to 14.1% by the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), 12.8% by the Flexible Spatiotemporal Data Fusion (FSDAF), 8.4% by the Extended Super-Resolution Convolutional Neural Network (ESRCNN), 8.1% by the Spatiotemporal Fusion Using a Generative Adversarial Network (STFGAN)). In particularly for images at different resolutions with different registration accuracies (e.g., 16-m Chinese GaoFen-1 and 500-m MODIS), MUSTFN achieved fusion results of good quality with an average rMAE of 9.3% in spectral reflectance at the first four bands. Finally, we demonstrated the applicability of MUSTFN (average rMAE of 9.18%) when fusing long-term Landsat-8 composite images and MODIS images over a large region (830 km x 600 km). Overall, our results suggest the effectiveness of MUSTFN to address the challenges in imagery fusion, including rapid land cover changes between image acquisition dates, geometric misregistration between images and limited availabilities of cloud-free images. The program of MUSTFN is freely available at: https://github.com/qpyeah/MUSTFN.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] A Multi-Feature Fusion and Attention Network for Multi-Scale Object Detection in Remote Sensing Images
    Cheng, Yong
    Wang, Wei
    Zhang, Wenjie
    Yang, Ling
    Wang, Jun
    Ni, Huan
    Guan, Tingzhao
    He, Jiaxin
    Gu, Yakang
    Tran, Ngoc Nguyen
    REMOTE SENSING, 2023, 15 (08)
  • [22] Multi-sensor Information Fusion Method Based on BP Neural Network
    Lin Liandong
    INTERNATIONAL JOURNAL OF ONLINE ENGINEERING, 2016, 12 (05) : 53 - 57
  • [23] Multi-Scale Feature Fusion Attention Network for Building Extraction in Remote Sensing Images
    Liu, Jia
    Gu, Hang
    Li, Zuhe
    Chen, Hongyang
    Chen, Hao
    ELECTRONICS, 2024, 13 (05)
  • [24] Multi-scale Adaptive Feature Fusion Network for Semantic Segmentation in Remote Sensing Images
    Shang, Ronghua
    Zhang, Jiyu
    Jiao, Licheng
    Li, Yangyang
    Marturi, Naresh
    Stolkin, Rustam
    REMOTE SENSING, 2020, 12 (05)
  • [25] A Multi-Scale Fusion Convolutional Neural Network for Face Detection
    Chen, Qiaosong
    Meng, Xiaomin
    Li, Wen
    Fu, Xingyu
    Deng, Xin
    Wang, Jin
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 1013 - 1018
  • [26] Aircraft detection in remote sensing imagery with multi-scale feature fusion convolutional neural networks
    Yao Q.
    Hu X.
    Lei H.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2019, 48 (10): : 1266 - 1274
  • [27] Multi-scale convolutional neural network for multi-focus image fusion
    Mustafa, Hafiz Tayyab
    Yang, Jie
    Zareapoor, Masoumeh
    IMAGE AND VISION COMPUTING, 2019, 85 : 26 - 35
  • [28] A Novel Bearing Fault Diagnosis Method Based on Improved Convolutional Neural Network and Multi-Sensor Fusion
    Wang, Zhongyao
    Xu, Xiao
    Song, Dongli
    Zheng, Zejun
    Li, Weidong
    MACHINES, 2025, 13 (03)
  • [29] FALL DETECTION USING CONVOLUTIONAL NEURAL NETWORK WITH MULTI-SENSOR FUSION
    Zhou, Xu
    Qian, Li-Chang
    You, Peng-Jie
    Ding, Ze-Gang
    Han, Yu-Qi
    2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW 2018), 2018,
  • [30] Image Classification Method Based on Multi-Scale Convolutional Neural Network
    Du, Shaobo
    Li, Jing
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2024, 33 (10)