Visual Tracking via Local Sparse Correlation Filters

被引:0
|
作者
Fan, Nana [1 ]
Ma, Xiao [1 ]
He, Zhenyu [1 ]
Yang, Wei-Guo [2 ]
机构
[1] Harbin Inst Technol, Shenzhen Grad Sch, Sch Comp Sci & Technol, Shenzhen, Peoples R China
[2] Shenzhen Konka Commun Technol Co, Shenzhen, Peoples R China
关键词
visual tracking; sparse coding; correlation filters;
D O I
10.1109/RVSP.2015.15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Visual tracking is a challenging problem due to the intricate appearance variation of the objects in video sequences. Recently, correlation filters(CFs) technique has become a powerful tool for building a robust and high-speed visual tracker. However, there are still some intractable problems need to be solved: 1) The updating strategy of the CF's appearance model is linear, this strategy can not distinguish objects from the occlusions, may adding non-objects to the linear appearance model; 2) The conventional CFs can not handle the affine transforms of the objects. In this paper, we combine the local sparse method and CFs to construct an appearance model of the objects, and use the particle filters to find the objects' affine transforms. The experiments show that our approach outperforms the original local sparse coding approach and other state-of-the-art trackers.
引用
收藏
页码:27 / 30
页数:4
相关论文
共 50 条
  • [31] Visual Tracking via Coarse and Fine Structural Local Sparse Appearance Models
    Jia, Xu
    Lu, Huchuan
    Yang, Ming-Hsuan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (10) : 4555 - 4564
  • [32] VISUAL TRACKING VIA MANIFOLD REGULARIZED LOCAL STRUCTURED SPARSE REPRESENTATION MODEL
    Wang, Lingfeng
    Pan, Chunhong
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 1150 - 1154
  • [33] Robust Visual Tracking via Incremental Subspace Learning and Local Sparse Representation
    Guoliang Yang
    Zhengwei Hu
    Jun Tang
    Arabian Journal for Science and Engineering, 2018, 43 : 627 - 636
  • [34] Visual tracking via context-aware local sparse appearance model
    Li, Guiji
    Peng, Manman
    Nai, Ke
    Li, Zhiyong
    Li, Keqin
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2018, 56 : 92 - 105
  • [35] Asymmetric discriminative correlation filters for visual tracking
    Li, Shui-wang
    Jiang, Qian-bo
    Zhao, Qi-jun
    Lu, Li
    Feng, Zi-liang
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2020, 21 (10) : 1467 - 1484
  • [36] Learning Support Correlation Filters for Visual Tracking
    Zuo, Wangmeng
    Wu, Xiaohe
    Lin, Liang
    Zhang, Lei
    Yang, Ming-Hsuan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (05) : 1158 - 1171
  • [37] Asymmetric discriminative correlation filters for visual tracking
    Shui-wang Li
    Qian-bo Jiang
    Qi-jun Zhao
    Li Lu
    Zi-liang Feng
    Frontiers of Information Technology & Electronic Engineering, 2020, 21 : 1467 - 1484
  • [38] ROT Pooled Correlation Filters for Visual Tracking
    Sun, Yuxuan
    Sun, Chong
    Wang, Dong
    He, You
    Lu, Huchuan
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 5776 - 5784
  • [39] Visual Tracking by Assembling Multiple Correlation Filters
    Yang, Tianyu
    Shi, Zhongchao
    Wang, Gang
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2015, PT I, 2015, 9314 : 310 - 320
  • [40] SPATIALLY ATTENTIVE CORRELATION FILTERS FOR VISUAL TRACKING
    Qin, Huai
    Pi, Zhixiong
    Yu, Changqian
    Gao, Changxin
    Yu, Jin-Gang
    Sang, Nong
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 2695 - 2699