Visual Tracking via Local Sparse Correlation Filters

被引:0
|
作者
Fan, Nana [1 ]
Ma, Xiao [1 ]
He, Zhenyu [1 ]
Yang, Wei-Guo [2 ]
机构
[1] Harbin Inst Technol, Shenzhen Grad Sch, Sch Comp Sci & Technol, Shenzhen, Peoples R China
[2] Shenzhen Konka Commun Technol Co, Shenzhen, Peoples R China
关键词
visual tracking; sparse coding; correlation filters;
D O I
10.1109/RVSP.2015.15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Visual tracking is a challenging problem due to the intricate appearance variation of the objects in video sequences. Recently, correlation filters(CFs) technique has become a powerful tool for building a robust and high-speed visual tracker. However, there are still some intractable problems need to be solved: 1) The updating strategy of the CF's appearance model is linear, this strategy can not distinguish objects from the occlusions, may adding non-objects to the linear appearance model; 2) The conventional CFs can not handle the affine transforms of the objects. In this paper, we combine the local sparse method and CFs to construct an appearance model of the objects, and use the particle filters to find the objects' affine transforms. The experiments show that our approach outperforms the original local sparse coding approach and other state-of-the-art trackers.
引用
收藏
页码:27 / 30
页数:4
相关论文
共 50 条
  • [1] VISUAL TRACKING WITH SPARSE CORRELATION FILTERS
    Dong, Yanmei
    Yang, Min
    Pei, Mingtao
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 439 - 443
  • [2] Robust Visual Tracking via Multitask Sparse Correlation Filters Learning
    Nai, Ke
    Li, Zhiyong
    Gan, Yihui
    Wang, Qi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (01) : 502 - 515
  • [3] Learning Local Structured Correlation Filters for Visual Tracking via Spatial Joint Regularization
    Guo, Chenggang
    Chen, Dongyi
    Huang, Zhiqi
    IEEE ACCESS, 2019, 7 : 39158 - 39171
  • [4] A Robust Visual Tracking via Nonlocal Correlation Filters
    Wei, Yanxia
    Jiang, Zhen
    Chen, Dongxun
    SEVENTH INTERNATIONAL CONFERENCE ON OPTICAL AND PHOTONIC ENGINEERING (ICOPEN 2019), 2019, 11205
  • [5] Visual object tracking via collaborative correlation filters
    Xiaohuan Lu
    Jing Li
    Zhenyu He
    Wei Liu
    Lei You
    Signal, Image and Video Processing, 2020, 14 : 177 - 185
  • [6] Visual object tracking via collaborative correlation filters
    Lu, Xiaohuan
    Li, Jing
    He, Zhenyu
    Liu, Wei
    You, Lei
    SIGNAL IMAGE AND VIDEO PROCESSING, 2020, 14 (01) : 177 - 185
  • [7] Visual Tracking via Sparse and Local Linear Coding
    Wang, Guofeng
    Qin, Xueying
    Zhong, Fan
    Liu, Yue
    Li, Hongbo
    Peng, Qunsheng
    Yang, Ming-Hsuan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (11) : 3796 - 3809
  • [8] Visual Tracking via Spatially Aligned Correlation Filters Network
    Zhang, Mengdan
    Wang, Qiang
    Xing, Junliang
    Gao, Jin
    Peng, Peixi
    Hu, Weiming
    Maybank, Steve
    COMPUTER VISION - ECCV 2018, PT III, 2018, 11207 : 484 - 500
  • [9] Multiple Feature Fused for Visual Tracking via Correlation Filters
    Yuan, Di
    Lu, Xiaohuan
    Li, Donghao
    He, Zhenyu
    Luo, Nan
    2017 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2017, : 88 - 93
  • [10] Visual Tracking via Deep Feature Fusion and Correlation Filters
    Xia, Haoran
    Zhang, Yuanping
    Yang, Ming
    Zhao, Yufang
    SENSORS, 2020, 20 (12) : 1 - 20