Path integral quantization of a spinning particle

被引:1
|
作者
Kowalski-Glikman, Jerzy [1 ,2 ]
Rosati, Giacomo [1 ]
机构
[1] Univ Wroclaw, Inst Theoret Phys, Pl M Borna 9, PL-50204 Wroclaw, Poland
[2] Natl Ctr Nucl Res, Pasteura 7, PL-02093 Warsaw, Poland
关键词
REPRESENTATIONS; ALGEBRA;
D O I
10.1103/PhysRevD.101.065003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Following the idea of Alekseev and Shatashvili, we derive the path integral quantization of a modified relativistic particle action that results in the Feynman propagator of a free field with arbitrary spin. This propagator can be associated with the Duffin, Kemmer, and Petiau (DKP) form of a free field theory. We show explicitly that the obtained DKP propagator is equivalent to the standard one, for spins 0 and 1. We argue that this equivalence holds also for higher spins.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Path Integral Quantization of Volume
    Adrian P. C. Lim
    Annales Henri Poincaré, 2020, 21 : 1311 - 1327
  • [22] Representation of the propagator of a massive spinning particle as a BFV-BRST path integral
    V. G. Zima
    S. A. Fedoruk
    Physics of Atomic Nuclei, 2000, 63 : 617 - 622
  • [23] Path integral for spinning particle in the plane wave field: Global and local projections
    Boudiaf, N
    Boudjedaa, T
    Chetouani, L
    EUROPEAN PHYSICAL JOURNAL C, 2001, 20 (03): : 585 - 591
  • [24] Path integral for spinning particle in the plane wave field: Global and local projections
    N. Boudiaf
    T. Boudjedaa
    L. Chetouani
    The European Physical Journal C - Particles and Fields, 2001, 20 : 585 - 591
  • [25] Path integral and pseudoclassical action for spinning particle in external electromagnetic and torsion fields
    Geyer, B
    Gitman, D
    Shapiro, IL
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2000, 15 (24): : 3861 - 3876
  • [26] Quantization of a spinning particle in an arbitrary background
    Gavrilov, SP
    Gitman, DM
    CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (15) : 2989 - 2998
  • [27] Spinning Particle in Interaction with a Time Dependent Magnetic Field: A Path Integral Approach
    Benkhelil, Hilal
    Aouachria, Mekki
    INTELLIGENT MATHEMATICS II: APPLIED MATHEMATICS AND APPROXIMATION THEORY, 2016, 441 : 73 - 85
  • [28] Representation of the propagator of a massive spinning particle as a BFV-BRST path integral
    Zima, VG
    Fedoruk, SA
    PHYSICS OF ATOMIC NUCLEI, 2000, 63 (04) : 617 - 622
  • [29] Exact path integral for neutral spinning particle in interaction with helical magnetic field
    Merdaci, A
    Boudjedaa, T
    Chetouani, L
    PHYSICA SCRIPTA, 2001, 64 (01) : 15 - 19
  • [30] PATH-INTEGRAL QUANTIZATION OF THE DYNAMICS OF A CLASSICAL POINT PARTICLE WITH INTRINSIC SPIN
    NASH, PL
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1995, 110 (08): : 913 - 926