Estimating integrals of stochastic processes using space-time data

被引:0
|
作者
Niu, XF [1 ]
机构
[1] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
来源
ANNALS OF STATISTICS | 1998年 / 26卷 / 06期
关键词
centered sampling design; infill and increase domain asymptotics; infinite moving-average processes; spectral density matrices;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a space-time stochastic process Z(t)(x) = S(x)+ xi(t)(x) where S(x) is a signal process defined on R-d and xi(t)(x) represents measurement errors at time t. For a known measurable function v(x) on R-d and a fixed cube D subset of R-d, this paper proposes a linear estimator for the stochastic integral integral(D) v(x)S(x)dx based on space-time observations {Z(t)(x(i)): i = 1,..., n; t = 1,..., T}. Under mild conditions, the asymptotic properties of the mean squared error of the estimator are derived as the spatial distance between spatial sampling locations tends to zero and as time T increases to infinity. Central limit theorems for the estimation error are also studied.
引用
收藏
页码:2246 / 2263
页数:18
相关论文
共 50 条
  • [11] A study on sampling design for optimal prediction of space-time stochastic processes
    Angulo, JM
    Bueso, MC
    Alonso, FJ
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2000, 14 (06) : 412 - 427
  • [12] A study on sampling design for optimal prediction of space-time stochastic processes
    Angulo J.M.
    Bueso M.C.
    Alonso F.J.
    Stochastic Environmental Research and Risk Assessment, 2000, 14 (6) : 412 - 427
  • [13] Aggregation of space-time processes
    Giacomini, R
    Granger, CWJ
    JOURNAL OF ECONOMETRICS, 2004, 118 (1-2) : 7 - 26
  • [14] ESTIMATING INTEGRALS OF A STOCHASTIC-PROCESSES FROM DISCRETE SAMPLES
    ISTAS, J
    LAREDO, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (01): : 85 - 88
  • [15] Research on the Space-time Operation of the Space-time XML Data
    Feng, Shaorong
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON MANAGEMENT, EDUCATION, INFORMATION AND CONTROL, 2015, 125 : 1793 - 1798
  • [16] Space-Time Models in Stochastic Geometry
    Benes, Viktor
    Prokesova, Michaela
    Helisova, Katerina Stankova
    Zikmundova, Marketa
    STOCHASTIC GEOMETRY, SPATIAL STATISTICS AND RANDOM FIELDS: MODELS AND ALGORITHMS, 2015, 2120 : 204 - 231
  • [17] Space-time transformations within the path-integral approach to stochastic processes
    Batista, CD
    Drazer, G
    Reidel, D
    Wio, HS
    PHYSICAL REVIEW E, 1996, 54 (01): : 86 - 91
  • [18] STOCHASTIC QUANTIZATION IN MINKOWSKI SPACE-TIME
    SAKAMOTO, J
    PROGRESS OF THEORETICAL PHYSICS, 1988, 80 (01): : 190 - 198
  • [19] Space-Time Inversion of Stochastic Dynamics
    Giona, Massimiliano
    Brasiello, Antonio
    Adrover, Alessandra
    SYMMETRY-BASEL, 2020, 12 (05):
  • [20] STOCHASTIC SPACE-TIME AND QUANTUM PHENOMENA
    FREDERICK, C
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (01): : 24 - 25