Kids' Emotion Recognition Using Various Deep-Learning Models with Explainable AI

被引:10
|
作者
Rathod, Manish [1 ]
Dalvi, Chirag [1 ]
Kaur, Kulveen [1 ]
Patil, Shruti [2 ]
Gite, Shilpa [2 ]
Kamat, Pooja [1 ]
Kotecha, Ketan [2 ]
Abraham, Ajith [3 ]
Gabralla, Lubna Abdelkareim [4 ]
机构
[1] Deemed Univ, Symbiosis Int Univ, Symbiosis Ctr Appl Artificial Intelligence SCAAI, Pune 412115, Maharashtra, India
[2] Deemed Univ, Symbiosis Int Univ, Symbiosis Inst Technol, Comp Sci & Informat Technol Dept, Pune 412115, Maharashtra, India
[3] Machine Intelligence Res Labs MIR Labs, Auburn, WA 98071 USA
[4] Princess Nourah Bint Abdulrahman Univ, Coll Appl, Dept Comp Sci & Informat Technol, Riyadh 11671, Saudi Arabia
关键词
kids' emotion recognition; FER; explainable artificial intelligence; LIRIS; children emotion dataset; online learning;
D O I
10.3390/s22208066
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Human ideas and sentiments are mirrored in facial expressions. They give the spectator a plethora of social cues, such as the viewer's focus of attention, intention, motivation, and mood, which can help develop better interactive solutions in online platforms. This could be helpful for children while teaching them, which could help in cultivating a better interactive connect between teachers and students, since there is an increasing trend toward the online education platform due to the COVID-19 pandemic. To solve this, the authors proposed kids' emotion recognition based on visual cues in this research with a justified reasoning model of explainable AI. The authors used two datasets to work on this problem; the first is the LIRIS Children Spontaneous Facial Expression Video Database, and the second is an author-created novel dataset of emotions displayed by children aged 7 to 10. The authors identified that the LIRIS dataset has achieved only 75% accuracy, and no study has worked further on this dataset in which the authors have achieved the highest accuracy of 89.31% and, in the authors' dataset, an accuracy of 90.98%. The authors also realized that the face construction of children and adults is different, and the way children show emotions is very different and does not always follow the same way of facial expression for a specific emotion as compared with adults. Hence, the authors used 3D 468 landmark points and created two separate versions of the dataset from the original selected datasets, which are LIRIS-Mesh and Authors-Mesh. In total, all four types of datasets were used, namely LIRIS, the authors' dataset, LIRIS-Mesh, and Authors-Mesh, and a comparative analysis was performed by using seven different CNN models. The authors not only compared all dataset types used on different CNN models but also explained for every type of CNN used on every specific dataset type how test images are perceived by the deep-learning models by using explainable artificial intelligence (XAI), which helps in localizing features contributing to particular emotions. The authors used three methods of XAI, namely Grad-CAM, Grad-CAM++, and SoftGrad, which help users further establish the appropriate reason for emotion detection by knowing the contribution of its features in it.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] An Explainable AI Paradigm for Alzheimer's Diagnosis Using Deep Transfer Learning
    Mahmud, Tanjim
    Barua, Koushick
    Habiba, Sultana Umme
    Sharmen, Nahed
    Hossain, Mohammad Shahadat
    Andersson, Karl
    DIAGNOSTICS, 2024, 14 (03)
  • [42] Effective depression detection and interpretation: Integrating machine learning, deep learning, language models, and explainable AI
    Al Masud, Gazi Hasan
    Shanto, Rejaul Islam
    Sakin, Ishmam
    Kabir, Muhammad Rafsan
    ARRAY, 2025, 25
  • [43] Detecting Deepfake Images Using Deep Learning Techniques and Explainable AI Methods
    Abir, Wahidul Hasan
    Khanam, Faria Rahman
    Alam, Kazi Nabiul
    Hadjouni, Myriam
    Elmannai, Hela
    Bourouis, Sami
    Dey, Rajesh
    Khan, Mohammad Monirujjaman
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 35 (02): : 2151 - 2169
  • [44] Automatic ladybird beetle detection using deep-learning models
    Venegas, Pablo
    Calderon, Francisco
    Riofrio, Daniel
    Benitez, Diego
    Ramon, Giovani
    Cisneros-Heredia, Diego
    Coimbra, Miguel
    Luis Rojo-Alvarez, Jose
    Perez, Noel
    PLOS ONE, 2021, 16 (06):
  • [45] Portrait Segmentation Using Ensemble of Heterogeneous Deep-Learning Models
    Kim, Yong-Woon
    Byun, Yung-Cheol
    Krishna, Addapalli V. N.
    ENTROPY, 2021, 23 (02) : 1 - 20
  • [46] Speech Emotion Recognition by Late Fusion of Linguistic and Acoustic Features using Deep Learning Models
    Sato, Kiyohide
    Kishi, Keita
    Kosaka, Tetsuo
    2023 ASIA PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE, APSIPA ASC, 2023, : 1013 - 1018
  • [47] Deep Learning for Emotion Recognition on Small Datasets Using Transfer Learning
    Hong-Wei Ng
    Viet Dung Nguyen
    Vonikakis, Vassilios
    Winkler, Stefan
    ICMI'15: PROCEEDINGS OF THE 2015 ACM INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, 2015, : 443 - 449
  • [48] Hybrid deep learning models based emotion recognition with speech signals
    Chowdary, M. Kalpana
    Priya, E. Anu
    Danciulescu, Daniela
    Anitha, J.
    Hemanth, D. Jude
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2023, 17 (04): : 1435 - 1453
  • [49] Deep Learning Techniques for Speech Emotion Recognition, from Databases to Models
    Abbaschian, Babak Joze
    Sierra-Sosa, Daniel
    Elmaghraby, Adel
    SENSORS, 2021, 21 (04) : 1 - 27
  • [50] An Investigation of Deep Learning Models for EEG-Based Emotion Recognition
    Zhang, Yaqing
    Chen, Jinling
    Tan, Jen Hong
    Chen, Yuxuan
    Chen, Yunyi
    Li, Dihan
    Yang, Lei
    Su, Jian
    Huang, Xin
    Che, Wenliang
    FRONTIERS IN NEUROSCIENCE, 2020, 14