The Impact of Freeze-Thaw History on Soil Carbon Response to Experimental Freeze-Thaw Cycles

被引:15
|
作者
Rooney, Erin C. [1 ,2 ]
Bailey, Vanessa L. [2 ]
Patel, Kaizad F. [2 ]
Possinger, Angela R. [3 ]
Gallo, Adrian C. [4 ]
Bergmann, Maya [1 ]
SanClements, Michael [5 ]
Lybrand, Rebecca A. [1 ,6 ]
机构
[1] Oregon State Univ, Dept Crop & Soil Sci, Corvallis, OR 97331 USA
[2] Pacific Northwest Natl Lab, Earth & Biol Sci Directorate, Richland, WA 99352 USA
[3] Virginia Tech, Forest Resources & Environm Conservat, Blacksburg, VA USA
[4] Oregon State Univ, Dept Forest Engn Resources & Management, Corvallis, OR 97331 USA
[5] Battelle Mem Inst, Natl Ecol Observ Network NEON, Boulder, CO USA
[6] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
Freeze-thaw; permafrost; organic carbon; Arctic; soil; DISSOLVED ORGANIC-MATTER; PERMAFROST SOILS; MASS; NITROGEN; STABILIZATION; OXIDATION; TRENDS; REGION; TUNDRA;
D O I
10.1029/2022JG006889
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Freeze-thaw is a disturbance process in cold regions where permafrost soils are becoming vulnerable to temperature fluctuations above 0 degrees C. Freeze-thaw alters soil physical and biogeochemical properties with implications for carbon persistence and emissions in Arctic landscapes. We examined whether different freeze-thaw histories in two soil systems led to contrasting biogeochemical responses under a laboratory-controlled freeze-thaw incubation. We investigated controls on carbon composition through Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to identify nominal carbon oxidation states and relative abundances of aliphatic-type carbon molecules in both surface and subsurface soils. Soil cores (similar to 60 cm-depth) were sampled from two sites in Alaskan permafrost landscapes with different in situ freeze-thaw characteristics: Healy (>40 freeze-thaw cycles annually) and Toolik (<15 freeze-thaw cycles annually). FT-ICR-MS was coupled with in situ temperature data and soil properties (i.e., soil texture, mineralogy) to assess (a) differences in soil organic matter composition associated with previous freeze-thaw history and (b) sensitivity to experimental freeze-thaw in the extracted cores. Control (freeze-only) samples showed greater carbon oxidation in Healy soils compared with Toolik, even in lower mineral horizons where freeze-thaw history was comparable across both sites. Healy showed the most loss of carbon compounds following experimental freeze-thaw in the lower mineral depths, including a decrease in aliphatics. Toolik soils responded more slowly to freeze-thaw as shown by intermediary carbon oxidation distributed across multiple carbon compound classes. Variations in the response of permafrost carbon chemistry to freeze-thaw is an important factor for predicting changes in soil function as permafrost thaws in high northern latitudes.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] The impact of repeated freeze-thaw cycles on antiphospholipid antibody titer
    Maelegheer, Karel
    Devreese, Katrien M. J.
    RESEARCH AND PRACTICE IN THROMBOSIS AND HAEMOSTASIS, 2018, 2 (02) : 366 - 369
  • [32] Impact of freeze-thaw cycles on circulating inflammation marker measurements
    Huang, Wen-Yi
    Kemp, Troy J.
    Pfeiffer, Ruth M.
    Pinto, Ligia A.
    Hildesheim, Allan
    Purdue, Mark P.
    CYTOKINE, 2017, 95 : 113 - 117
  • [33] Impact of Freeze-Thaw Cycles on Mechanical Properties of Asphalt Mixes
    El-Hakim, Mohab
    Tighe, Susan L.
    TRANSPORTATION RESEARCH RECORD, 2014, (2444) : 20 - 27
  • [34] Microbial response to freeze-thaw cycles in tundra and taiga soils
    Schimel, JP
    Clein, JS
    SOIL BIOLOGY & BIOCHEMISTRY, 1996, 28 (08): : 1061 - 1066
  • [35] Impact of freeze-thaw cycles on organic carbon and metals in waters of permafrost peatlands
    Payandi-Rolland, Dahedrey
    Shirokova, Liudmila S.
    Labonne, Fabian
    Benezeth, Pascale
    Pokrovsky, Oleg S.
    CHEMOSPHERE, 2021, 279
  • [36] Influence of concentration of the washing solution and freeze-thaw cycles on the efficiency of the washing technology using freeze-thaw and ion exchange
    Hirose G.
    Inoue T.
    Ito Y.
    1600, Society of Materials Science Japan (69): : 75 - 80
  • [37] Correlation between Water Freeze-Thaw Resistance and Salt Freeze-Thaw Resistance of Concrete
    Xu G.
    Gong C.
    Liu J.
    Gao D.
    Zeng Z.
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2020, 23 (03): : 552 - 556and562
  • [38] Growth of cyanobacterial soil crusts during diurnal freeze-thaw cycles
    Schmidt, Steven K.
    Vimercati, Lara
    JOURNAL OF MICROBIOLOGY, 2019, 57 (04) : 243 - 251
  • [39] Effects of freeze-thaw cycles on High Arctic soil bacterial communities
    Lim, P. P.
    Pearce, D. A.
    Convey, P.
    Lee, L. S.
    Chan, K. G.
    Tan, G. Y. A.
    POLAR SCIENCE, 2020, 23
  • [40] Role of Macropores for Soil Compaction Restoring during Freeze-thaw Cycles
    He T.
    Zhang H.
    Zhang D.
    Liu H.
    Kong M.
    Ding Q.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2023, 54 (10): : 340 - 347