In situ SEM indentation of a Zr-based bulk metallic glass at elevated temperatures

被引:34
|
作者
Wheeler, J. M. [1 ]
Raghavan, R. [1 ]
Michler, J. [1 ]
机构
[1] EMPA Swiss Fed Labs Mat Sci & Technol, Lab Mech Mat & Nanostruct, CH-3602 Thun, Switzerland
关键词
Electron microscopy; Nanoindentation; Bulk amorphous alloys; Shear bands; INSTRUMENTED INDENTATION; PRESSURE SENSITIVITY; PLASTIC-DEFORMATION; SERRATED FLOW; AMORPHOUS METALS; NANOINDENTATION; BEHAVIOR; DEPENDENCE;
D O I
10.1016/j.msea.2011.08.057
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The elevated temperature indentation response of a Zr-based bulk metallic glass (BMG) was examined using a novel in situ SEM indentation system modified with tip and sample heating. Hardness was found to linearly increase with temperature from 7 GPa at 25 degrees C to 7.6 GPa at 200 degrees C, while the modulus remained constant within measurement accuracy. Adhesion between indenter and the BMG was observed to increase with increasing temperature. Both the number and pointed morphology of the surface shear offset displacements were found to decrease with increasing temperature. Conversely, the magnitude of the load drops/serrations in the load displacement curve was found to increase dramatically with temperature. The transitions from smooth to serrated flow were observed to fall within the temperature-strain rate ranges observed by other researchers in uniaxial compression. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:8750 / 8756
页数:7
相关论文
共 50 条
  • [41] Absence of crystallization during cylindrical indentation of a Zr-based metallic glass
    Kramer, MJ
    Sordelet, DJ
    Bastarows, AF
    Tan, X
    Biner, SB
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2005, 351 (27-29) : 2159 - 2165
  • [42] Stable fracture of a malleable Zr-based bulk metallic glass
    Sun, B. A.
    Tan, J.
    Pauly, S.
    Kuehn, U.
    Eckert, J.
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (10)
  • [43] Temperature Effect on Fracture of a Zr-Based Bulk Metallic Glass
    Yang, Na
    Yi, Jun
    Yang, Yu Hang
    Huang, Bo
    Jia, Yan Dong
    Kou, Sheng Zhong
    Wang, Gang
    MATERIALS, 2020, 13 (10)
  • [45] Reciprocating wear mechanisms in a Zr-based bulk metallic glass
    Jin H.W.
    Ayer R.
    Koo J.Y.
    Raghavan R.
    Ramamurty U.
    Journal of Materials Research, 2007, 22 (2) : 264 - 273
  • [46] Ambient temperature embrittlement of a Zr-based bulk metallic glass
    Jiang, F.
    Wang, H. F.
    Jiang, M. Q.
    Li, G.
    Zhao, Y. L.
    He, L.
    Sun, J.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 549 : 14 - 19
  • [47] Microstructural studies of crystallization of a Zr-based bulk metallic glass
    Pekarskaya, E
    Löffler, JF
    Johnson, WL
    ACTA MATERIALIA, 2003, 51 (14) : 4045 - 4057
  • [48] Serrated flow kinetics in a Zr-based bulk metallic glass
    Qiao, J. W.
    Zhang, Y.
    Liaw, P. K.
    INTERMETALLICS, 2010, 18 (11) : 2057 - 2064
  • [49] Compressive fracture characteristics of Zr-based bulk metallic glass
    Fan ZhenJun
    Zheng ZhiYuan
    Jiao ZengBao
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2010, 53 (05) : 823 - 827
  • [50] Tensile fracture characteristics and deformation behavior of a Zr-based bulk metallic glass at high temperatures
    Wang, G
    Shen, J
    Sun, JF
    Lu, ZP
    Stachurski, ZH
    Zhou, BD
    INTERMETALLICS, 2005, 13 (06) : 642 - 648