Optical solitons in fibre Bragg gratings with third- and fourth- order dispersive reflectivities

被引:130
|
作者
Yildirim, Yakup [1 ]
Biswas, Anjan [2 ,3 ,4 ,5 ]
Guggilla, Padmaja [5 ]
Khan, Salam [5 ]
Alshehri, Hashim M. [3 ]
Belic, Milivoj R. [6 ]
机构
[1] Near East Univ, Fac Arts & Sci, Dept Math, CY-99138 Nicosia, Cyprus
[2] Natl Res Nucl Univ, Dept Appl Math, 31 Kashirskoe Hwy, Moscow 115409, Russia
[3] King Abdulaziz Univ, Dept Math, Math Modeling & Appl Computat M MAC Res Grp, Jeddah 21589, Saudi Arabia
[4] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, ZA-0204 Medunsa, South Africa
[5] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[6] Inst Phys Belgrade, Pregrevica 118, Zemun 11080, Serbia
关键词
solitons; Bragg gratings; sine-Gordon equation method; PARABOLIC LAW NONLINEARITY; CUBIC NONLINEARITY; KERR LAW;
D O I
10.3116/16091833/22/4/239/2021
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
For the first time in the field of nonlinear optics, we address cubic-quartic solitons appearing in the fibre Bragg gratings with dispersive reflectivity for four different cases of nonlinear refractive-index structures. A complete spectrum of single solitons, together with some straddled solitons, emerges from the integration scheme adopted by us, which is the approach of sine-Gordon equation.
引用
收藏
页码:239 / 254
页数:16
相关论文
共 50 条
  • [31] Third- and fourth-order elasticities of biological soft tissues
    Destrade, Michel
    Gilchrist, Michael D.
    Ogden, Raymond W.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2010, 127 (04): : 2103 - 2106
  • [32] Order determination of MA models using third- and fourth-order statistics
    Ruiz, DP
    Gallego, A
    Carrion, MC
    Porti, J
    SIGNAL PROCESSING, 1998, 65 (03) : 403 - 406
  • [33] Passive Third-, Fourth-, and Fifth-Order Reconfigurable D-Band Frequency Multipliers Based on Switched-Capacitor Varactors
    Zhang, Nan
    Belostotski, Leonid
    Haslett, James W.
    2020 IEEE 63RD INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2020, : 440 - 443
  • [34] Optical fibre Bragg gratings at harmonics of the Bragg wavelength and their sensing properties
    Collins, Stephen F.
    Sidiroglou, Fotios
    Wade, Scott A.
    Bal, Harpreet K.
    Baxter, Greg W.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2013, 24 (09)
  • [35] Dynamics of moving gap solitons in linearly coupled Bragg gratings with dispersive reflectivity
    Baratali, B. H.
    Atai, Javid
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2015, 32 (07) : 1309 - 1317
  • [36] Optical solitons in fiber Bragg gratings with dispersive reflectivity for quadratic cubic nonlinearity by extended trial function method
    Biswas, Anjan
    Ekici, Mehmet
    Sonmezoglu, Abdullah
    Belic, Milivoj R.
    OPTIK, 2019, 185 : 50 - 56
  • [37] Cubic-quartic optical solitons with Bragg gratings having anti-cubic nonlinearity and dispersive reflectivity
    Zayed, Elsayed M. E.
    Alngar, Mohamed E. M.
    Shohib, Reham M. A.
    Biswas, Anjan
    Yildirim, Yakup
    Alshehri, Hashim M.
    Belic, Milivoj R.
    OPTIK, 2021, 247
  • [38] Optical solitons in fiber Bragg gratings with cubic-quartic dispersive reflectivity by enhanced Kudryashov's approach
    Arnous, Ahmed H.
    Zhou, Qin
    Biswas, Anjan
    Guggilla, Padmaja
    Khan, Salam
    Yildirim, Yakup
    Alshomrani, Ali S.
    Alshehri, Hashim M.
    PHYSICS LETTERS A, 2022, 422
  • [39] Optical solitons in fiber Bragg gratings with dispersive reflectivity for parabolic law nonlinearity by extended trial function method
    Biswas, Anjan
    Ekici, Mehmet
    Sonmezoglu, Abdullah
    Belic, Milivoj R.
    OPTIK, 2019, 183 : 595 - 601
  • [40] Slow gap solitons in an optical fibre Bragg grating
    de Sterke, C. Martijn
    Mok, Joe T.
    Littler, Ian C. M.
    Eggleton, Benjamin J.
    2006 IEEE LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2006, : 849 - +