Arithmetic properties of Delannoy numbers and Schroder numbers

被引:12
|
作者
Sun, Zhi-Wei [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Congruence; Polynomial; Delannoy number; Schroder number; Motzkin number; CENTRAL BINOMIAL COEFFICIENTS; CONGRUENCES; SUMS;
D O I
10.1016/j.jnt.2017.07.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Define & para;& para;D-n{x) = Sigma(k=0n) ((n)(k))(2 )x(k )(x + 1)(n-k )for n = 0,1, 2 ,...& para;& para;and & para;& para;s(n)(x) = Sigma k=1(n )1/n(k(n))1/n<((n)(k))((n)(k-1))x(k-1) >(x+1)(n-k) >for n = 1, 2, 3, ...& para;& para;Then D-n (1) is the n-th central Delannoy number D-n, and s(n) (1) is the n-th little Schroder number S-n. In this paper we obtain some surprising arithmetic properties of D-n(x) and S-n(x). We show that & para;& para;1/n(Sigma k=0)n-1( D)k((x) s)k+1((x) is an element of Z[x(x+1)] for all n=1, 2, 3, ...& para;& para;Moreover, for any odd prime p and p-adic integer x not equivalent to 0, -1 (mod p), we establish the supercongruence)& para;& para;Sigma k=0p-1( D)k((x) s)k+1(x)( equivalent to 0 (mod p)2().& para;& para;As an application we confirm Conjecture 5.5 in [S14a], in particular )(we prove that & para;& para;1/n)( Sigma)k=0(n-1T)k(M)k((-3))( is an element of Z for all n = 1, 2, 3, ...,& para;& para;where T)k( is the k-th central trinomial coefficient and M)k( is the k-th Motzkin number. (C) 2017 Elsevier Inc. All rights reserved.)
引用
收藏
页码:146 / 171
页数:26
相关论文
共 50 条
  • [11] Analytic aspects of Delannoy numbers
    Wang, Yi
    Zheng, Sai-Nan
    Chen, Xi
    DISCRETE MATHEMATICS, 2019, 342 (08) : 2270 - 2277
  • [12] A New Generalization of Delannoy Numbers
    Dagli, Muhammet Cihat
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (04): : 1729 - 1735
  • [13] ASYMPTOTICS OF THE WEIGHTED DELANNOY NUMBERS
    Noble, Rob
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (01) : 175 - 188
  • [14] Delannoy Numbers and Preferential Arrangements
    Chen, Kwang-Wu
    MATHEMATICS, 2019, 7 (03):
  • [15] A Class of Weighted Delannoy Numbers
    Grau, Jose Maria
    Oller-Marcen, Antonio M.
    Varona, Juan Luis
    FILOMAT, 2022, 36 (17) : 5985 - 6007
  • [16] Arithmetic properties of Apery numbers
    Luca, Florian
    Shparlinski, Igor E.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 78 : 545 - 562
  • [17] NEW CONGRUENCES FOR SUMS INVOLVING APERY NUMBERS OR CENTRAL DELANNOY NUMBERS
    Guo, Victor J. W.
    Zeng, Jiang
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (08) : 2003 - 2016
  • [18] A note on lattice chains and Delannoy numbers
    Caughman, John S.
    Haithcock, Clifford R.
    Veerman, J. J. P.
    DISCRETE MATHEMATICS, 2008, 308 (12) : 2623 - 2628
  • [19] ON AN EXTREMAL PROBLEM RELATED TO THE DELANNOY NUMBERS
    Vassilev-Missana, Mladen V.
    Atanassov, Krassimir T.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2008, 14 (02) : 11 - 14
  • [20] Another description of the central Delannoy numbers
    Arregui, JL
    Vujic, D
    Castañeda, N
    AMERICAN MATHEMATICAL MONTHLY, 2003, 110 (05): : 443 - 444