An approach for ordered dither using artificial neural network

被引:0
|
作者
Chatterjee, Arpitam [1 ]
Tudu, Bipan [2 ]
Paul, Kanai Chandra [1 ]
机构
[1] Jadavpur Univ, Dept Printing Engn, Kolkata 700032, India
[2] Jadavpur Univ, Dept Instrumentat & Elect Engn, Kolkata 700032, India
关键词
Ordered dither; digital halftoning; thresholding; artificial neural network (ANN); back-propagation multi layer perceptron (BP-MLP); PSNR; UQI; SSIM;
D O I
10.1117/12.853179
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Ordered dither is one of the popular techniques for digital halftoning where the original continuous tone image is thresholded against an orderly generated screen matrix. This paper presents a technique to generate the screen matrix using three-layer back-propagation multi layer perceptron (BP-MLP) artificial neural network (ANN) model. The image raw data has been preprocessed prior feeding to the input layer. The output obtained at the hidden layer of the model has been considered as the screen matrix for ordered dither. The results achieved using this technique have been evaluated subjectively as well as objectively using commonly used quality indices like peak signal to noise ratio (PSNR), universal quality index (UQI) and structural similarity index measure (SSIM).
引用
收藏
页数:6
相关论文
共 50 条
  • [21] An Event Classifier using EEG Signals: an Artificial Neural Network Approach
    Nawroj, Ahsan
    Wang, Siyuan
    Jouny, Ismail
    Yu, Yih-Choung
    Gabel, Lisa
    2012 38TH ANNUAL NORTHEAST BIOENGINEERING CONFERENCE (NEBEC), 2012, : 386 - +
  • [22] ESTIMATION OF LIQUIDUS TEMPERATURES OF STEEL USING ARTIFICIAL NEURAL NETWORK APPROACH
    Machu, Mario
    Drozdova, Lubomira
    Smetana, Bedrich
    Zimny, Ondrej
    Vlcek, Jozef
    27TH INTERNATIONAL CONFERENCE ON METALLURGY AND MATERIALS (METAL 2018), 2018, : 56 - 62
  • [23] Locus minimization in breed prediction using artificial neural network approach
    Iquebal, M. A.
    Ansari, M. S.
    Sarika
    Dixit, S. P.
    Verma, N. K.
    Aggarwal, R. A. K.
    Jayakumar, S.
    Rai, A.
    Kumar, D.
    ANIMAL GENETICS, 2014, 45 (06) : 898 - 902
  • [24] Classification and analysis of simple pendulum using artificial neural network approach
    Wadhwa, Adya
    Wadhwa, Ajay
    EUROPEAN JOURNAL OF PHYSICS, 2024, 45 (06)
  • [25] Predicting bacterial community assemblages using an artificial neural network approach
    Larsen, Peter E.
    Field, Dawn
    Gilbert, Jack A.
    NATURE METHODS, 2012, 9 (06) : 621 - +
  • [26] Rainfall-runoff model using an artificial neural network approach
    Riad, S
    Mania, J
    Bouchaou, L
    Najjar, Y
    MATHEMATICAL AND COMPUTER MODELLING, 2004, 40 (7-8) : 839 - 846
  • [27] Performance evaluation of air ejectors using artificial neural network approach
    Gupta, Pradeep
    Rao, Srisha M., V
    Kumar, Pramod
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2023, 48 (02):
  • [28] New Approach to Optimize the Rate of Penetration Using Artificial Neural Network
    Elkatatny, Salaheldin
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2018, 43 (11) : 6297 - 6304
  • [29] Predicting bacterial community assemblages using an artificial neural network approach
    Larsen P.E.
    Field D.
    Gilbert J.A.
    Nature Methods, 2012, 9 (6) : 621 - 625
  • [30] An artificial neural network approach for predicting hypertension using NHANES data
    Lopez-Martinez, Fernando
    Rolando Nunez-Valdez, Edward
    Gonzalez Crespo, Ruben
    Garcia-Diaz, Vicente
    SCIENTIFIC REPORTS, 2020, 10 (01)