Semiparametric Regression for Time Series of Counts

被引:0
|
作者
Wang, Qin [1 ]
Wu, Rongning [2 ]
机构
[1] Virginia Commonwealth Univ, Dept Stat Sci & Operat Res, Richmond, VA USA
[2] CUNY, Baruch Coll, Dept Stat & Comp Informat Syst, New York, NY 10010 USA
关键词
Autocorrelation; Generalized estimating equation; Generalized linear model; Latent process; Parameter-driven model; Semiparametric regression; CLUSTERED DATA; MODELS; EQUATIONS;
D O I
10.1080/03610926.2012.750359
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study estimation in a parameter-driven semiparametric regression model for time series of counts, where serial dependence among the observed counts is introduced by an autocorrelated latent process {epsilon(t)}. The conditional mean ut of the response variable given {epsilon(t)} is of the form u(t) = exp[beta X-T(t) + eta(Z(t))]epsilon(t), where X-t and Z(t) are covariates at time t, beta is an unknown parameter vector, and eta(center dot) is an unknown smooth function. We use non parametric kernel estimating equations to estimate the function eta(center dot) and profile-based estimating equations to estimate the parameter vector beta. We derive the asymptotic properties of the estimators, and conduct simulation studies to evaluate the finite sample performance of the estimation procedure.
引用
收藏
页码:983 / 995
页数:13
相关论文
共 50 条
  • [21] Quantile Regression for Thinning-based INAR(1) Models of Time Series of Counts
    Sheng, Dan-shu
    Wang, De-hui
    Yang, Kai
    Wu, Zi-ang
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2021, 37 (02): : 264 - 277
  • [22] Quantile Regression for Thinning-based INAR(1) Models of Time Series of Counts
    Dan-shu SHENG
    De-hui WANG
    Kai YANG
    Zi-ang WU
    Acta Mathematicae Applicatae Sinica, 2021, 37 (02) : 264 - 277
  • [23] Nonlinear Time Series: Semiparametric and Nonparametric Methods
    Ravi, Sreenivasan
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2009, 172 : 940 - 941
  • [24] A flexible semiparametric forecasting model for time series
    Li, Degui
    Linton, Oliver
    Lu, Zudi
    JOURNAL OF ECONOMETRICS, 2015, 187 (01) : 345 - 357
  • [25] Semiparametric Estimator of Time Series Conditional Variance
    Mishra, Santosh
    Su, Liangjun
    Ullah, Aman
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2010, 28 (02) : 256 - 274
  • [26] Time Series Modelling With Semiparametric Factor Dynamics
    Park, Byeong U.
    Mammen, Enno
    Haerdle, Wolfgang
    Borak, Szymon
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (485) : 284 - 298
  • [27] Regression Calibration in Semiparametric Accelerated Failure Time Models
    Yu, Menggang
    Nan, Bin
    BIOMETRICS, 2010, 66 (02) : 405 - 414
  • [28] Semiparametric regression analysis for clustered failure time data
    Cai, T
    Wei, LJ
    Wilcox, M
    BIOMETRIKA, 2000, 87 (04) : 867 - 878
  • [30] Semiparametric failure time regression with replicates of mismeasured covariates
    Hu, CC
    Lin, DY
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (465) : 105 - 118