We study estimation in a parameter-driven semiparametric regression model for time series of counts, where serial dependence among the observed counts is introduced by an autocorrelated latent process {epsilon(t)}. The conditional mean ut of the response variable given {epsilon(t)} is of the form u(t) = exp[beta X-T(t) + eta(Z(t))]epsilon(t), where X-t and Z(t) are covariates at time t, beta is an unknown parameter vector, and eta(center dot) is an unknown smooth function. We use non parametric kernel estimating equations to estimate the function eta(center dot) and profile-based estimating equations to estimate the parameter vector beta. We derive the asymptotic properties of the estimators, and conduct simulation studies to evaluate the finite sample performance of the estimation procedure.
机构:
Univ York, Dept Math, York YO10 5DD, N Yorkshire, EnglandUniv York, Dept Math, York YO10 5DD, N Yorkshire, England
Li, Degui
Linton, Oliver
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cambridge, Fac Econ, Cambridge CB3 9DD, EnglandUniv York, Dept Math, York YO10 5DD, N Yorkshire, England
Linton, Oliver
Lu, Zudi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southampton, Southampton Stat Sci Res Inst, Southampton SO17 1BJ, Hants, England
Univ Southampton, Sch Math Sci, Southampton SO17 1BJ, Hants, EnglandUniv York, Dept Math, York YO10 5DD, N Yorkshire, England