Electronic health records based reinforcement learning for treatment optimizing

被引:29
|
作者
Li, Tianhao [1 ]
Wang, Zhishun [1 ]
Lu, Wei [1 ]
Zhang, Qian [1 ]
Li, Dengfeng [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Management & Econ, Chengdu, Peoples R China
基金
中国国家自然科学基金;
关键词
Electronic health records; Deep reinforcement learning; Glucose control; Cooperative learning; DIABETIC-KETOACIDOSIS; GLUCOSE REGULATION;
D O I
10.1016/j.is.2021.101878
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Electronic Health Records (EHRs) have become one of the main sources of evidence to evaluate clinical actions, improve medical quality, predict disease-risk, and optimize treatment effects. However, EHRs present several modeling challenges, including heterogeneous data types and dynamic characteristics. Reinforcement learning provides an efficient way for sequential decision-making. Powered by model-based reinforcement learning approach, we propose an EHRs-based reinforcement learning algorithm to optimize sequential treatment strategies for diseases, such as sepsis, diabetes, and their complications. We conduct our experiments with this algorithm to optimize physicians' historical treatment strategies and achieve better glucose control for diabetic ketoacidosis (DKA) patients, which is one serious complication of diabetes. The research includes the modeling process and reinforcement learning process. During the EHRs modeling process, besides considering the necessary physiological variables, we also consider the major disease factors to enhance the interpretability of the model. In the reinforcement learning process, a deep Q network is employed to explore the optimal insulin dose for patients. Moreover, inspired by the real medical scenes, we extend the algorithm to cooperative learning environment. We use the joint policy of the two agents to simulate doctor consultations, and achieve better treatment performances in terms of policy and blood glucose control than single agent and clinicians. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Learning health system, positive deviance analysis, and electronic health records: Synergy for a learning health system
    Azar, Kristen M. J.
    Pletcher, Mark J.
    Greene, Sarah M.
    Pressman, Alice R.
    LEARNING HEALTH SYSTEMS, 2023, 7 (03):
  • [42] Learning from heterogeneous temporal data in electronic health records
    Zhao, Jing
    Papapetrou, Panagiotis
    Asker, Lars
    Bostrom, Henrik
    JOURNAL OF BIOMEDICAL INFORMATICS, 2017, 65 : 105 - 119
  • [43] Learning a Health Knowledge Graph from Electronic Medical Records
    Rotmensch, Maya
    Halpern, Yoni
    Tlimat, Abdulhakim
    Horng, Steven
    Sontag, David
    SCIENTIFIC REPORTS, 2017, 7
  • [44] Domain Knowledge Guided Deep Learning with Electronic Health Records
    Yin, Changchang
    Zhao, Rongjian
    Qian, Buyue
    Lv, Xin
    Zhang, Ping
    2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 738 - 747
  • [45] Learning a Health Knowledge Graph from Electronic Medical Records
    Maya Rotmensch
    Yoni Halpern
    Abdulhakim Tlimat
    Steven Horng
    David Sontag
    Scientific Reports, 7
  • [46] Fuzzy Multiview Graph Learning on Sparse Electronic Health Records
    Tang, Tao
    Han, Zhuoyang
    Yu, Shuo
    Bagirov, Adil
    Zhang, Qiang
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2024, 32 (10) : 5520 - 5532
  • [47] Subphenotyping depression using machine learning and electronic health records
    Xu, Zhenxing
    Wang, Fei
    Adekkanattu, Prakash
    Bose, Budhaditya
    Vekaria, Veer
    Brandt, Pascal
    Jiang, Guoqian
    Kiefer, Richard C.
    Luo, Yuan
    Pacheco, Jennifer A.
    Rasmussen, Luke V.
    Xu, Jie
    Alexopoulos, George
    Pathak, Jyotishman
    LEARNING HEALTH SYSTEMS, 2020, 4 (04):
  • [48] The Effectiveness of Multitask Learning for Phenotyping with Electronic Health Records Data
    Ding, Daisy Yi
    Simpson, Chloe
    Pfohl, Stephen
    Kale, Dave C.
    Jung, Kenneth
    Shah, Nigam H.
    PACIFIC SYMPOSIUM ON BIOCOMPUTING 2019, 2019, : 18 - 29
  • [49] Improving Health Care Outcomes through Personalized Comparisons of Treatment Effectiveness Based on Electronic Health Records
    Hoffman, Sharona
    Podgurski, Andy
    JOURNAL OF LAW MEDICINE & ETHICS, 2011, 39 (03): : 425 - 436
  • [50] Readmission prediction using deep learning on electronic health records
    Ashfaq, Awais
    Sant'Anna, Anita
    Lingman, Markus
    Nowaczyk, Slawomir
    JOURNAL OF BIOMEDICAL INFORMATICS, 2019, 97