Einstein metrics with prescribed conformal infinity on 4-manifolds

被引:37
|
作者
Anderson, Michael T. [1 ]
机构
[1] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
Einstein metrics; conformal infinity; AdS/CFT correspondence;
D O I
10.1007/s00039-008-0668-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper considers the existence of conformally compact Einstein metrics on 4-manifolds. A reasonably complete understanding is obtained for the existence of such metrics with prescribed conformal infinity, when the conformal infinity is of positive scalar curvature. We find in particular that general solvability depends on the topology of the filling manifold. The obstruction to extending these results to arbitrary boundary values is also identified. While most of the paper concerns dimension 4, some general results on the structure of the space of such metrics hold in all dimensions.
引用
收藏
页码:305 / 366
页数:62
相关论文
共 50 条
  • [31] Einstein 4-manifolds and nonpositive isotropic curvature
    A. Brasil
    E. Costa
    F. Vitório
    Archiv der Mathematik, 2017, 109 : 293 - 300
  • [32] Noncollapsed degeneration of Einstein 4-manifolds, II
    Ozuch, Tristan
    GEOMETRY & TOPOLOGY, 2022, 26 (04) : 1529 - 1634
  • [33] Rigidity of Einstein 4-manifolds with positive curvature
    Yang, DG
    INVENTIONES MATHEMATICAE, 2000, 142 (02) : 435 - 450
  • [34] Einstein 4-manifolds and nonpositive isotropic curvature
    Brasil, A., Jr.
    Costa, E.
    Vitorio, F.
    ARCHIV DER MATHEMATIK, 2017, 109 (03) : 293 - 300
  • [35] On isospectral compactness in conformal class for 4-manifolds
    Liu, Xianfu
    Wang, Zuoqin
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (05)
  • [36] A gauge theoretic approach to Einstein 4-manifolds
    Fine, Joel
    Krasnov, Kirill
    Panov, Dmitri
    NEW YORK JOURNAL OF MATHEMATICS, 2014, 20 : 293 - 323
  • [37] Rigidity of Einstein 4-manifolds with positive curvature
    DaGang Yang
    Inventiones mathematicae, 2000, 142 : 435 - 450
  • [38] On 4-manifolds with zero-entropy metrics
    Hillman, J. A.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2007, 39 : 327 - 328
  • [39] Existence of conformal metrics with prescribed Q-curvature on manifolds
    Alghanemi, Azeb
    Chtioui, Hichem
    Gdarat, Mohamed
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2022, 85
  • [40] Kahler-Einstein metrics with prescribed singularities on Fano manifolds
    Trusiani, Antonio
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (793): : 1 - 57