SPReM: Sparse Projection Regression Model For High-Dimensional Linear Regression

被引:11
|
作者
Sun, Qiang [1 ]
Zhu, Hongtu [2 ]
Liu, Yufeng [3 ]
Ibrahim, Joseph G. [2 ]
机构
[1] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Dept Biostat, Biostat, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Dept Stat & Operat Res, Stat, Chapel Hill, NC 27599 USA
基金
美国国家卫生研究院; 美国国家科学基金会; 加拿大健康研究院;
关键词
Heritability ratio; Imaging genetics; Multivariate regression; Projection regression; Sparse; Wild bootstrap; PRINCIPAL-COMPONENTS; BRAIN-DEVELOPMENT; MULTIVARIATE; CLASSIFICATION; FMRI; HERITABILITY; CONVERGENCE; RESPONSES; SELECTION; GENETICS;
D O I
10.1080/01621459.2014.892008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The aim of this article is to develop a sparse projection regression modeling (SPReM) framework to perform multivariate regression modeling with a large number of responses and a multivariate covariate of interest. We propose two novel heritability ratios to simultaneously perform dimension reduction, response selection, estimation, and testing, while explicitly accounting for correlations among multivariate responses. Our SPReM is devised to specifically address the low statistical power issue of many standard statistical approaches, such as the Hotelling's T-2 test statistic or a mass univariate analysis, for high-dimensional data. We formulate the estimation problem of SPReM as a novel sparse unit rank projection (SURP) problem and propose a fast optimization algorithm for SURP. Furthermore, we extend SURP to the sparse multirank projection (SMURP) by adopting a sequential SURP approximation. Theoretically, we have systematically investigated the convergence properties of SURP and the convergence rate of SURP estimates. Our simulation results and real data analysis have shown that SPReM outperforms other state-of-the-art methods.
引用
收藏
页码:289 / 302
页数:14
相关论文
共 50 条
  • [21] Estimation of linear projections of non-sparse coefficients in high-dimensional regression
    Azriel, David
    Schwartzman, Armin
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 174 - 206
  • [22] MODEL SELECTION FOR HIGH-DIMENSIONAL LINEAR REGRESSION WITH DEPENDENT OBSERVATIONS
    Ing, Ching-Kang
    ANNALS OF STATISTICS, 2020, 48 (04): : 1959 - 1980
  • [23] The likelihood ratio test for high-dimensional linear regression model
    Xie, Junshan
    Xiao, Nannan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (17) : 8479 - 8492
  • [24] Multiple outliers detection in sparse high-dimensional regression
    Wang, Tao
    Li, Qun
    Chen, Bin
    Li, Zhonghua
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (01) : 89 - 107
  • [25] Testing Regression Coefficients in High-Dimensional and Sparse Settings
    Xu, Kai
    Tian, Yan
    Cheng, Qing
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (10) : 1513 - 1532
  • [26] THE SPARSE LAPLACIAN SHRINKAGE ESTIMATOR FOR HIGH-DIMENSIONAL REGRESSION
    Huang, Jian
    Ma, Shuangge
    Li, Hongzhe
    Zhang, Cun-Hui
    ANNALS OF STATISTICS, 2011, 39 (04): : 2021 - 2046
  • [27] ADMM for High-Dimensional Sparse Penalized Quantile Regression
    Gu, Yuwen
    Fan, Jun
    Kong, Lingchen
    Ma, Shiqian
    Zou, Hui
    TECHNOMETRICS, 2018, 60 (03) : 319 - 331
  • [28] Testing Regression Coefficients in High-Dimensional and Sparse Settings
    Kai Xu
    Yan Tian
    Qing Cheng
    Acta Mathematica Sinica, English Series, 2021, 37 : 1513 - 1532
  • [29] Testing Regression Coefficients in High-Dimensional and Sparse Settings
    Kai XU
    Yan TIAN
    Qing CHENG
    Acta Mathematica Sinica,English Series, 2021, (10) : 1513 - 1532
  • [30] ADAPTIVE LASSO FOR SPARSE HIGH-DIMENSIONAL REGRESSION MODELS
    Huang, Jian
    Ma, Shuangge
    Zhang, Cun-Hui
    STATISTICA SINICA, 2008, 18 (04) : 1603 - 1618