Uniqueness and Symmetry for the Mean Field Equation on Arbitrary Flat Tori

被引:1
|
作者
Gu, Guangze [1 ,2 ]
Gui, Changfeng [1 ]
Hu, Yeyao [1 ,2 ]
Li, Qinfeng [1 ]
机构
[1] Univ Texas San Antonio, Dept Math, San Antonio, TX 78249 USA
[2] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
基金
美国国家科学基金会;
关键词
GAUSSIAN CURVATURE EQUATION; 2-DIMENSIONAL EULER EQUATIONS; ONE-DIMENSIONAL SYMMETRY; SIMONS HIGGS-MODEL; STATISTICAL-MECHANICS; CONFORMAL METRICS; STATIONARY FLOWS; INEQUALITY; BLOW;
D O I
10.1093/imrn/rnaa109
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the following mean field equation on a flat torus T := C/(Z + Z tau): Delta u + rho(e(u)/integral(T)e(u) - 1/vertical bar T vertical bar) = 0, where tau is an element of C, Im tau > 0, and vertical bar T vertical bar denotes the total area of the torus. We first prove that the solutions are evenly symmetric about any critical point of u provided that rho <= 8 pi. Based on this crucial symmetry result, we are able to establish further the uniqueness of the solution if rho <= min {8 pi, lambda(1) (T)vertical bar T vertical bar}. Furthermore, we also classify all one-dimensional solutions by showing that the level sets must be closed geodesics.
引用
收藏
页码:18812 / 18827
页数:16
相关论文
共 50 条
  • [41] FIELD EQUATION FOR BARYONS WITH AN ARBITRARY SPIN
    IVANOV, MI
    NIKOLOV, AV
    VAKLEV, JS
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1978, 31 (10): : 1261 - 1263
  • [42] Uniqueness Results for Mean Field Equations with Singular Data
    Bartolucci, D.
    Lin, C. S.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (07) : 676 - 702
  • [43] Constant mean curvature tori as stationary solutions to the Davey-Stewartson equation
    Bohle, Christoph
    MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (1-2) : 489 - 498
  • [44] A priori estimates and uniqueness for some mean field equations
    Lucia, M
    Zhang, L
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 217 (01) : 154 - 178
  • [45] GENERALIZED RENORMALIZATION-GROUP EQUATION FOR SYSTEMS OF ARBITRARY SYMMETRY
    LISYANSKY, AA
    NICOLAIDES, D
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1994, 33 (12) : 2399 - 2406
  • [46] Pseudospin symmetry in relativistic mean field theory
    Meng, J
    Sugawara-Tanabe, K
    Yamaji, S
    Ring, P
    Arima, A
    PHYSICAL REVIEW C, 1998, 58 (02): : R628 - R631
  • [47] Mean field at finite temperature and symmetry breaking
    Beraudo, A
    De Pace, A
    Martini, M
    Molinari, A
    ANNALS OF PHYSICS, 2004, 311 (01) : 81 - 119
  • [48] Symmetry restoration in mean-field approaches
    Sheikh, J. A.
    Dobaczewski, J.
    Ring, P.
    Robledo, L. M.
    Yannouleas, C.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2021, 48 (12)
  • [49] Pseudospin symmetry and relativistic mean field eigenfunctions
    Ginocchio, JN
    PHYSICAL REVIEW C, 2002, 66 (06): : 8
  • [50] Relativistic mean field approach and the pseudospin symmetry
    Lalazissis, GA
    Gambhir, YK
    Maharana, JP
    Warke, CS
    Ring, P
    PHYSICAL REVIEW C, 1998, 58 (01): : R45 - R48