Multi-objective optimization of combined cooling, heating and power system considering the collaboration of thermal energy storage with load uncertainties

被引:23
|
作者
Lu, Chunyan [1 ]
Wang, Jiangjiang [1 ]
Yan, Rujing [1 ]
机构
[1] North China Elect Power Univ, Sch Energy Power & Mech Engn, Baoding 071003, Hebei, Peoples R China
来源
JOURNAL OF ENERGY STORAGE | 2021年 / 40卷
基金
中国国家自然科学基金;
关键词
Combined cooling; Heating and power (CCHP) system; Thermal energy storage; Multi-objective optimization; Load uncertainty; Reliability; SENSITIVITY-ANALYSIS; CCHP SYSTEM; OPERATION; CONFIGURATION; SOLAR; PERFORMANCE; DESIGN;
D O I
10.1016/j.est.2021.102819
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A thermoelectric coupling limitation imposes the combined cooling, heating, and power (CCHP) systems low performance under dynamic uncertainty. Energy storage is an effective way to address the problem. This paper integrates an energy storage device into the CCHP system to decouple the limitation and proposes a multiobjective optimization model considering load uncertainty for the optimal capacity of energy storage. The design space is a set of all feasible configuration schemes that meet the requirements of the system's confidence level. A chance-constrained method is employed to address the load uncertainty and transform the uncertain optimization into deterministic optimization. Load uncertainty is closely related to the given confidence level. Therefore, the indicator loss of load expectation is used to evaluate the reliability of the CCHP system. The economic and environmental performance of the CCHP system is assessed by using the annual total cost and carbon dioxide emission, respectively. A hotel example validates the feasibility of the proposed methodology. The results show that increasing the confidence level from 0.5 to 0.99 results in the capacity increase of the waste heat boiler from 326.8 kW to 408.2 kW in the heating mode. The increased change reduces the loss of load expectation by 108.4% and increases the annual operation cost by 110.14%.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Multi-objective Optimal Operation of Combined Cooling, Heating and Power Microgrid
    Li, Yujun
    Wu, Junyong
    Yan, Huaguang
    Li, Dezhi
    Ma, Tengfei
    Lin, Kaijun
    2017 IEEE CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2), 2017, : 579 - 584
  • [32] Multi-objective optimization in redundant system considering load sharing
    de Paula, Cassio Pereira
    Visnadi, Lais Bittencourt
    de Castro, Helio Fiori
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2019, 181 : 17 - 27
  • [33] Multi-objective energy storage capacity optimisation considering Microgrid generation uncertainties
    Garmabdari, Rasoul
    Moghimi, Mojtaba
    Yang, Fuwen
    Gray, Evan
    Lu, Junwei
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2020, 119
  • [34] Multi-objective optimization of multi-energy complementary integrated energy systems considering load prediction and renewable energy production uncertainties
    Liu, Zhiqiang
    Cui, Yanping
    Wang, Jiaqiang
    Yue, Chang
    Agbodjan, Yawovi Souley
    Yang, Yu
    ENERGY, 2022, 254
  • [35] Performance assessment of combined cooling, heating and power system operation strategy based on multi-objective seagull optimization algorithm
    Li, Ling-Ling
    Zheng, Sheng-Jie
    Tseng, Ming-Lang
    Liu, Yu-Wei
    ENERGY CONVERSION AND MANAGEMENT, 2021, 244
  • [36] Multi-Objective Optimization Based on Life Cycle Assessment for Hybrid Solar and Biomass Combined Cooling,Heating and Power System
    LIU Jiejie
    LI Yao
    MENG Xianyang
    WU Jiangtao
    Journal of Thermal Science, 2024, 33 (03) : 931 - 950
  • [37] Multi-Objective Optimization of a Solar-Assisted Combined Cooling, Heating and Power Generation System Using the Greywolf Optimizer
    Ukaegbu, Uchechi
    Tartibu, Lagouge
    Lim, C. W.
    ALGORITHMS, 2023, 16 (10)
  • [38] Multi-Objective Optimization Based on Life Cycle Assessment for Hybrid Solar and Biomass Combined Cooling, Heating and Power System
    Liu, Jiejie
    Li, Yao
    Meng, Xianyang
    Wu, Jiangtao
    JOURNAL OF THERMAL SCIENCE, 2024, 33 (03) : 931 - 950
  • [39] Multi-Objective Optimization Based on Life Cycle Assessment for Hybrid Solar and Biomass Combined Cooling, Heating and Power System
    Jiejie Liu
    Yao Li
    Xianyang Meng
    Jiangtao Wu
    Journal of Thermal Science, 2024, 33 : 931 - 950