Ferromagnetism in the strong hybridization regime of the periodic Anderson model

被引:11
|
作者
Batista, CD [1 ]
Bonca, J
Gubernatis, JE
机构
[1] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[3] Univ Ljubljana, FMF, Dept Phys, Ljubljana, Slovenia
[4] Jozef Stefan Inst, Ljubljana, Slovenia
关键词
D O I
10.1103/PhysRevB.68.064403
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We determine exactly the ground state of the one-dimensional periodic Anderson model (PAM) in the strong hybridization regime. In this regime, the low energy sector of the PAM maps into an effective Hamiltonian that has a ferromagnetic ground state for any electron density between half and three-quarters filling. This rigorous result proves the existence of a new magnetic state that was excluded in the previous analysis of the mixed valence systems.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] A VARIATIONAL THEORY FOR THE PERIODIC ANDERSON MODEL
    OGUCHI, A
    PROGRESS OF THEORETICAL PHYSICS, 1987, 77 (02): : 278 - 286
  • [42] SINGLET PAIRING IN THE PERIODIC ANDERSON MODEL
    OLES, B
    OLES, AM
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1986, 54-7 : 413 - 415
  • [43] Ferromagnetic state in the periodic Anderson model
    Izyumov, YA
    Alekseev, DS
    PHYSICS OF METALS AND METALLOGRAPHY, 2004, 97 (01): : 15 - 24
  • [44] Quantum disorder in the periodic Anderson model
    Noce, C
    PHYSICAL REVIEW B, 2005, 71 (09)
  • [45] Perturbation theory for the periodic Anderson model
    Moskalenko, VA
    THEORETICAL AND MATHEMATICAL PHYSICS, 1997, 110 (02) : 243 - 255
  • [46] Periodic Anderson model: magnetic properties
    Meyer, D
    Nolting, W
    PHYSICA B, 2000, 281 (281): : 189 - 190
  • [47] Superconducting instability in the periodic Anderson model
    Tahvildar-Zadeh, AN
    Hettler, MH
    Jarrell, M
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1998, 78 (04): : 365 - 374
  • [48] Perturbation theory for the periodic Anderson model
    V. A. Moskalenko
    Theoretical and Mathematical Physics, 1997, 110 : 243 - 255
  • [49] DENSITIES OF STATES IN THE PERIODIC ANDERSON MODEL
    MARINARO, M
    NOCE, C
    ROMANO, A
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1991, 3 (21) : 3719 - 3728
  • [50] Dynamics and scaling in the periodic Anderson model
    N. S. Vidhyadhiraja
    D. E. Logan
    The European Physical Journal B - Condensed Matter and Complex Systems, 2004, 39 : 313 - 334