A New Lower Bound for the Multiplicative Degree-Kirchhoff Index

被引:0
|
作者
Palacios, Jose Luis [1 ]
机构
[1] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
关键词
RESISTANCE-DISTANCE; GRAPHS;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
For G = (V, E) an arbitrary simple undirected connected graph, its multiplicative degree-Kirchhoff index is defined by R*(G) = Sigma(i<j) d(i)d(j).R-ij. We show that R* (G) >= n - 1 + 2 vertical bar E vertical bar(n - 2), and the equality is attained by the complete graph K-n, and the star graph S-n.
引用
收藏
页码:251 / 254
页数:4
相关论文
共 50 条
  • [41] Degree Kirchhoff Index of Unicyclic Graphs
    Feng, Lihua
    Gutman, Ivan
    Yu, Guihai
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2013, 69 (03) : 629 - 648
  • [42] A Note on the Additive Degree Kirchhoff Index
    Ilic, Aleksandar
    Ilic, Milovan
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2016, 75 (01) : 223 - 226
  • [43] NOTE ON DEGREE KIRCHHOFF INDEX OF GRAPHS
    Hakimi-Nezhaad, M.
    Ashrafi, A. R.
    Gutman, I.
    TRANSACTIONS ON COMBINATORICS, 2013, 2 (03) : 43 - 52
  • [44] On the degree Kirchhoff index of unicyclic graphs
    Qi, Xuli
    Zhou, Bo
    DISCRETE APPLIED MATHEMATICS, 2020, 284 (284) : 86 - 98
  • [45] The (Multiplicative Degree-) Kirchhoff Index of Graphs Derived from the Cartesian Product of Sn and K2
    Liu, Jia-Bao
    Peng, Xin-Bei
    Gu, Jiao-Jiao
    Lin, Wenshui
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [46] A Lower Bound for the Harmonic Index of a Graph with Minimum Degree at Least Three
    Cheng, Minghong
    Wang, Ligong
    FILOMAT, 2016, 30 (08) : 2249 - 2260
  • [47] A lower bound for the harmonic index of a graph with minimum degree at least two
    Wu, Renfang
    Tang, Zikai
    Deng, Hanyuan
    FILOMAT, 2013, 27 (01) : 51 - 55
  • [48] On Some Lower Bounds of the Kirchhoff Index
    Milovanovic, I. Z.
    Milovanovic, E. I.
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2017, 78 (01) : 169 - 180
  • [49] Some lower bounds on the Kirchhoff index
    Stankov, S.
    Milovanovic, I.
    Milovanovic, E.
    Matejic, M.
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024, 9 (01) : 27 - 36
  • [50] New Upper Bound and Lower Bound for Degree-Based Network Entropy
    Lu, Guoxiang
    Li, Bingqing
    Wang, Lijia
    SYMMETRY-BASEL, 2016, 8 (02):