A New Lower Bound for the Multiplicative Degree-Kirchhoff Index

被引:0
|
作者
Palacios, Jose Luis [1 ]
机构
[1] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
关键词
RESISTANCE-DISTANCE; GRAPHS;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
For G = (V, E) an arbitrary simple undirected connected graph, its multiplicative degree-Kirchhoff index is defined by R*(G) = Sigma(i<j) d(i)d(j).R-ij. We show that R* (G) >= n - 1 + 2 vertical bar E vertical bar(n - 2), and the equality is attained by the complete graph K-n, and the star graph S-n.
引用
收藏
页码:251 / 254
页数:4
相关论文
共 50 条
  • [1] Revisiting Bounds for the Multiplicative Degree-Kirchhoff Index
    Bianchi, Monica
    Cornaro, Alessandra
    Palacios, Jose Luis
    Renom, Jose Miguel
    Torriero, Anna
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2016, 75 (01) : 227 - 231
  • [2] The Extremal Cacti on Multiplicative Degree-Kirchhoff Index
    He, Fangguo
    Zhu, Zhongxun
    MATHEMATICS, 2019, 7 (01):
  • [3] Multiplicative Degree-Kirchhoff Index of Random Polyphenyl Chains
    Li, Meilian
    Xie, Jinshan
    Lian, Dezhong
    Yang, Cheng-Fu
    SENSORS AND MATERIALS, 2021, 33 (08) : 2629 - 2638
  • [4] The expected values for the Schultz index, Gutman index, multiplicative degree-Kirchhoff index and additive degree-Kirchhoff index of a random polyphenylene chain
    Zhang, Leilei
    Li, Qishun
    Li, Shuchao
    Zhang, Minjie
    DISCRETE APPLIED MATHEMATICS, 2020, 282 : 243 - 256
  • [5] The limiting behaviours for the Gutman index, Schultz index, multiplicative degree-Kirchhoff index and additive degree-Kirchhoff index of a random polyphenylene chain
    Zhang, Jinlian
    Peng, Xuhui
    Chen, Hanlin
    DISCRETE APPLIED MATHEMATICS, 2021, 299 (299) : 62 - 73
  • [6] New Upper and Lower Bounds for the Additive Degree-Kirchhoff Index
    Bianchi, Monica
    Cornaro, Alessandra
    Palacios, Jose Luis
    Torrieroa, Anna
    CROATICA CHEMICA ACTA, 2013, 86 (04) : 363 - 370
  • [7] The multiplicative degree-Kirchhoff index and complexity of a class of linear networks
    Liu, Jia-Bao
    Wang, Kang
    AIMS MATHEMATICS, 2024, 9 (03): : 7111 - 7130
  • [8] Enumeration of the Multiplicative Degree-Kirchhoff Index in the Random Polygonal Chains
    Zhu, Wanlin
    Geng, Xianya
    MOLECULES, 2022, 27 (17):
  • [9] Upper and Lower Bounds for the Mixed Degree-Kirchhoff Index
    Bianchi, Monica
    Cornaro, Alessandra
    Palacios, Jose Luis
    Torriero, Anna
    FILOMAT, 2016, 30 (09) : 2351 - 2358
  • [10] Kirchhoff index, multiplicative degree-Kirchhoff index and spanning trees of the linear crossed hexagonal chains
    Pan, Yingui
    Li, Jianping
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2018, 118 (24)