Automatic modulation recognition based on mixed-type features

被引:16
|
作者
Jiang, Xin-Rui [1 ]
Chen, Hui [1 ]
Zhao, Yao-Dong [2 ]
Wang, Wen-Qin [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu, Peoples R China
[2] Dept Commun Engn, Sci & Technol Elect Informat Control Lab, Chengdu, Peoples R China
基金
中国国家自然科学基金;
关键词
Modulation recognition; high-order cumulant; instantaneous feature; back propagation (BP) neural network;
D O I
10.1080/00207217.2020.1756456
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The existing modulation classification method using instantaneous features is poor for low SNRs, and the high-order cumulant features-based modulation recognition algorithm is only applicable to some types of communication modulation signals. To overcome these problems, we propose a mixed features-based modulation recognition algorithm, which refines instantaneous features and high-order cumulant feature, and the back propagation (BP) neural network is adopted as a classifier to perform experiments. The experimental results show that our proposed mixed features-based modulation recognition method can improve the recognition rate for more kinds of signals.
引用
收藏
页码:105 / 114
页数:10
相关论文
共 50 条
  • [41] Clinicopathological Features and Prognosis of Mixed-Type T1a Gastric Cancer Based on Lauren's Classification
    Pyo, Jeung Hui
    Ahn, Soomin
    Lee, Hyuk
    Min, Byung-Hoon
    Lee, Jun Haeng
    Shim, Sang Goon
    Choi, Min Gew
    Lee, Jun Ho
    Sohn, Tae Sung
    Bae, Jae Moon
    Kim, Kyoung-Mee
    Yeon, Seungmin
    Jung, Sin-Ho
    Kim, Jae J.
    Kim, Sung
    ANNALS OF SURGICAL ONCOLOGY, 2016, 23 : S784 - S791
  • [42] Clinicopathological Features and Prognosis of Mixed-Type T1a Gastric Cancer Based on Lauren’s Classification
    Jeung Hui Pyo
    Soomin Ahn
    Hyuk Lee
    Byung-Hoon Min
    Jun Haeng Lee
    Sang Goon Shim
    Min Gew Choi
    Jun Ho Lee
    Tae Sung Sohn
    Jae Moon Bae
    Kyoung-Mee Kim
    Seungmin Yeon
    Sin-Ho Jung
    Jae J. Kim
    Sung Kim
    Annals of Surgical Oncology, 2016, 23 : 784 - 791
  • [43] EXEMPLAR-BASED NOISE ROBUST AUTOMATIC SPEECH RECOGNITION USING MODULATION SPECTROGRAM FEATURES
    Baby, Deepak
    Virtanen, Tuomas
    Gemmeke, Jort F.
    Barker, Tom
    Van Hamme, Hugo
    2014 IEEE WORKSHOP ON SPOKEN LANGUAGE TECHNOLOGY SLT 2014, 2014, : 519 - 524
  • [44] Investigating Modulation Spectrogram Features for Deep Neural Network-based Automatic Speech Recognition
    Baby, Deepak
    Van Hamme, Hugo
    16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, : 2479 - 2483
  • [45] Automatic Modulation Recognition Based on Deep-Learning Features Fusion of Signal and Constellation Diagram
    Han, Hui
    Yi, Zhijian
    Zhu, Zhigang
    Li, Lin
    Gong, Shuaige
    Li, Bin
    Wang, Mingjie
    ELECTRONICS, 2023, 12 (03)
  • [46] MIXED-TYPE EQUATION IN MULTIDIMENSIONAL DOMAINS
    KARATOPR.GD
    DOKLADY AKADEMII NAUK SSSR, 1973, 208 (03): : 528 - 530
  • [47] ON AN EIGENVALUE PROBLEM FOR A MIXED-TYPE EQUATION
    PONOMAREV, SM
    DOKLADY AKADEMII NAUK SSSR, 1980, 251 (05): : 1070 - 1072
  • [48] Cauchy problems for mixed-type operators
    Uchikoshi, K
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2000, 36 (02) : 191 - 230
  • [49] Giant mixed-type perinephric liposarcoma
    Tan G.Y.M.
    Chong Y.L.
    Ramesh K.
    Walford N.Q.
    Tan J.K.
    International Urology and Nephrology, 2004, 36 (3) : 319 - 322
  • [50] THE TRANSIENTS IN MIXED-TYPE ELECTROMAGNETIC SYSTEMS
    VASILEV, KM
    MEEROVICH, EA
    ELECTRICAL TECHNOLOGY, 1986, (03): : 45 - 51