KRASNOSEL'SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION

被引:0
|
作者
Wang, Fuli [1 ]
Wang, Feng [1 ]
机构
[1] Changzhou Univ, Sch Math & Phys, Changzhou 213164, Peoples R China
来源
FIXED POINT THEORY | 2012年 / 13卷 / 01期
基金
中国国家自然科学基金;
关键词
Fixed point theorem; nonlinear expansive mapping; nonlinear integral equation;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new fixed point theorem on nonlinear expansive operators as defined in this article is firstly pointed out. Subsequently, we establish several fixed point theorems on the sum of A + B, where A is a compact operator, B is a nonlinear expansive operator. The results obtained generalize and improve the corresponding results of Avramescu and Xiang in papers [C. Avramescu, C. Vladimirescu, Some remarks on Krasnoselskii's fixed point theorem, Fixed Point Theory, 4 (2003) 3-13, T. Xiang, R. Yuan, A class of expansive-type Krasnosel'skii fixed point theorems, Nonlinear Anal. 71 (2009) 3229-3239]. As applications, the existence theorem of nonnegative solutions for a class of nonlinear integral equation is discussed.
引用
收藏
页码:285 / 291
页数:7
相关论文
共 50 条
  • [41] SOME FIXED POINT THEOREMS FOR MULTIVALUED KRASNOSEL'SKII-TYPE EQUATIONS UNDER WEAK TOPOLOGY
    Temel, Cesim
    Selah, Muberra
    JOURNAL OF MATHEMATICAL ANALYSIS, 2024, 15 (01): : 1 - 12
  • [42] Fixed point index for Krasnosel'skii-type set-valued maps on complete ANRs
    Kryszewsi, Wojciech
    Mederski, Jaroslaw
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2006, 28 (02) : 335 - 384
  • [43] Inertial Krasnosel'skii-Mann type hybrid algorithms for solving hierarchical fixed point problems
    Dong, Qiao-Li
    Kazmi, K. R.
    Ali, Rehan
    Li, Xiao-Huan
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2019, 21 (02)
  • [44] Sadovskii-Krasnosel’skii type fixed point theorems in Banach spaces with application to evolution equations
    Ezzinbi K.
    Taoudi M.-A.
    Journal of Applied Mathematics and Computing, 2015, 49 (1-2) : 243 - 260
  • [45] An optimal Krasnosel'skii-type theorem for an open starshaped set
    Cel, J
    GEOMETRIAE DEDICATA, 1997, 66 (03) : 293 - 301
  • [46] An Optimal Krasnosel'skii-type Theorem for an Open Starshaped Set
    J. Cel
    Geometriae Dedicata, 1997, 66 : 293 - 301
  • [47] MOSER-HARNACK INEQUALITY, KRASNOSEL'SKII TYPE FIXED POINT THEOREMS IN CONES AND ELLIPTIC PROBLEMS
    Precup, Radu
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2012, 40 (02) : 301 - 313
  • [48] Double Inertial Krasnosel'skii-Mann-Type Method for Approximating Fixed Point of Nonexpansive Mappings
    Akuchu, Besheng George
    Ezeafulukwe, Uzoamaka Azuka
    Aphane, Maggie
    Ugwunnadi, Godwin Chidi
    Asanya, Chukwuebuka Malachi
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (03): : 2246 - 2263
  • [49] Results on Neutral Partial Integrodifferential Equations Using Monch-Krasnosel'Skii Fixed Point Theorem with Nonlocal Conditions
    Ravichandran, Chokkalingam
    Munusamy, Kasilingam
    Nisar, Kottakkaran Sooppy
    Valliammal, Natarajan
    FRACTAL AND FRACTIONAL, 2022, 6 (02)
  • [50] The Krasnosel'skii-Krein theorem for differential inclusions
    Plotnikova, NV
    DIFFERENTIAL EQUATIONS, 2005, 41 (07) : 1049 - 1053