Mapping Global Forest Aboveground Biomass with Spaceborne LiDAR, Optical Imagery, and Forest Inventory Data

被引:115
|
作者
Hu, Tianyu [1 ]
Su, Yanjun [1 ,2 ]
Xue, Baolin [1 ]
Liu, Jin [1 ]
Zhao, Xiaoqian [1 ]
Fang, Jingyun [1 ,3 ,4 ]
Guo, Qinghua [1 ,2 ]
机构
[1] Chinese Acad Sci, State Key Lab Vegetat & Environm Change, Inst Bot, Beijing 100093, Peoples R China
[2] Univ Calif Merced, Sch Engn, Sierra Nevada Res Inst, Merced, CA 95343 USA
[3] Peking Univ, Coll Urban & Environm Sci, Dept Ecol, Beijing 100871, Peoples R China
[4] Peking Univ, Minist Educ, Key Lab Earth Surface Proc, Beijing 100871, Peoples R China
基金
美国国家科学基金会;
关键词
global; forest; aboveground biomass; remote sensing; LiDAR; TROPICAL RAIN-FOREST; SMALL-FOOTPRINT LIDAR; CARBON STOCKS; RADAR BACKSCATTER; SATELLITE LIDAR; BIOSPHERE MODEL; AIRBORNE LIDAR; BOREAL FOREST; GROUND PLOTS; MODIS;
D O I
10.3390/rs8070565
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
As a large carbon pool, global forest ecosystems are a critical component of the global carbon cycle. Accurate estimations of global forest aboveground biomass (AGB) can improve the understanding of global carbon dynamics and help to quantify anthropogenic carbon emissions. Light detection and ranging (LiDAR) techniques have been proven that can accurately capture both horizontal and vertical forest structures and increase the accuracy of forest AGB estimation. In this study, we mapped the global forest AGB density at a 1-km resolution through the integration of ground inventory data, optical imagery, Geoscience Laser Altimeter System/Ice, Cloud, and Land Elevation Satellite data, climate surfaces, and topographic data. Over 4000 ground inventory records were collected from published literatures to train the forest AGB estimation model and validate the resulting global forest AGB product. Our wall-to-wall global forest AGB map showed that the global forest AGB density was 210.09 Mg/ha on average, with a standard deviation of 109.31 Mg/ha. At the continental level, Africa (333.34 +/- 63.80 Mg/ha) and South America (301.68 +/- 67.43 Mg/ha) had higher AGB density. The AGB density in Asia, North America and Europe were 172.28 +/- 94.75, 166.48 +/- 84.97, and 132.97 +/- 50.70 Mg/ha, respectively. The wall-to-wall forest AGB map was evaluated at plot level using independent plot measurements. The adjusted coefficient of determination (R-2) and root-mean-square error (RMSE) between our predicted results and the validation plots were 0.56 and 87.53 Mg/ha, respectively. At the ecological zone level, the R-2 and RMSE between our map and Intergovernmental Panel on Climate Change suggested values were 0.56 and 101.21 Mg/ha, respectively. Moreover, a comprehensive comparison was also conducted between our forest AGB map and other published regional AGB products. Overall, our forest AGB map showed good agreements with these regional AGB products, but some of the regional AGB products tended to underestimate forest AGB density.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Estimation of Above-Ground Forest Biomass in Nepal by the Use of Airborne LiDAR, and Forest Inventory Data
    Bahadur, K. C. Yam
    Liu, Qijing
    Saud, Pradip
    Gaire, Damodar
    Adhikari, Hari
    LAND, 2024, 13 (02)
  • [42] Effects of Forest Canopy Structure on Forest Aboveground Biomass Estimation Using Landsat Imagery
    Li, Chao
    Li, Mingyang
    Iizuka, Kotaro
    Liu, Jie
    Chen, Keyi
    Li, Yingchang
    IEEE ACCESS, 2021, 9 : 5285 - 5295
  • [43] Synergistic use of spaceborne lidar and optical imagery for assessing forest disturbance: An Alaska case study
    Goetz, S. J.
    Sun, M.
    Baccini, A.
    Beck, P. S. A.
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2010, 115
  • [44] Quantification of aboveground forest biomass using Quickbird imagery, topographic variables, and field data
    Zhou, Jing-Jing
    Zhao, Zhong
    Zhao, Qingxia
    Zhao, Jun
    Wang, Haize
    JOURNAL OF APPLIED REMOTE SENSING, 2013, 7
  • [45] Estimating aboveground biomass density using hybrid statistical inference with GEDI lidar data and Paraguay's national forest inventory
    Bullock, Eric L.
    Healey, Sean P.
    Yang, Zhiqiang
    Acosta, Regino
    Villalba, Hermelinda
    Insfran, Katherin Patricia
    Melo, Joana B.
    Wilson, Sylvia
    Duncanson, Laura
    Naesset, Erik
    Armston, John
    Saarela, Svetlana
    Stahl, Goeran
    Patterson, Paul L.
    Dubayah, Ralph
    ENVIRONMENTAL RESEARCH LETTERS, 2023, 18 (08)
  • [46] Towards global spaceborne lidar biomass: Developing and applying boreal forest biomass models for ICESat-2 laser altimetry data
    Neuenschwander, A.
    Duncanson, L.
    Montesano, P.
    Minor, D.
    Guenther, E.
    Hancock, S.
    Wulder, M. A.
    White, J. C.
    Purslow, M.
    Thomas, N.
    Mandel, A.
    Feng, T.
    Armston, J.
    Kellner, J. R.
    Andersen, H. E.
    Boschetti, L.
    Fekety, P.
    Hudak, A.
    Pisek, J.
    Sanchez-Lopez, N.
    Sterenczak, K.
    SCIENCE OF REMOTE SENSING, 2024, 10
  • [47] Mapping US forest biomass using nationwide forest inventory data and moderate resolution information
    Blackard, J. A.
    Finco, M. V.
    Helmer, E. H.
    Holden, G. R.
    Hoppus, M. L.
    Jacobs, D. M.
    Lister, A. J.
    Moisen, G. G.
    Nelson, M. D.
    Riemann, R.
    Ruefenacht, B.
    Salajanu, D.
    Weyermann, D. L.
    Winterberger, K. C.
    Brandeis, T. J.
    Czaplewski, R. L.
    McRoberts, R. E.
    Patterson, P. L.
    Tymcio, R. P.
    REMOTE SENSING OF ENVIRONMENT, 2008, 112 (04) : 1658 - 1677
  • [48] Mapping forest Biomass on several pilot regions in Canada with Landsat TM and forest inventory data
    Guindon, L
    Fournier, RA
    Beaudoin, A
    Luther, JE
    Hall, RJ
    Piercey, DE
    Arsenault, É
    Lambert, MC
    Case, B
    IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 886 - 888
  • [49] Combining LiDAR and Spaceborne Multispectral Data for Mapping Successional Forest Stages in Subtropical Forests
    Ziegelmaier Neto, Bill Herbert
    Schimalski, Marcos Benedito
    Liesenberg, Veraldo
    Sothe, Camile
    Martins-Neto, Rorai Pereira
    Floriani, Mireli Moura Pitz
    REMOTE SENSING, 2024, 16 (09)
  • [50] Spatial distribution of forest aboveground biomass estimated from remote sensing and forest inventory data in New England, USA
    Zheng, Daolan
    Heath, Linda S.
    Ducey, Mark J.
    JOURNAL OF APPLIED REMOTE SENSING, 2008, 2