Behavior of a zonal flow near the threshold

被引:2
|
作者
Marchenko, VS [1 ]
Goloborod'ko, VY [1 ]
Reznik, SN [1 ]
机构
[1] Ukrainian Acad Sci, Inst Nucl Res, UA-03680 Kiev, Ukraine
关键词
D O I
10.1063/1.1627330
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Numerical solutions of the model equation describing nonlinear dynamics of a zonal flow near marginal stability [Phys. Rev. Lett. 89, 185002 (2002)] are presented for different parameter regimes. The present simulations confirm the conclusion that below certain critical values of the drift wave to zonal flow growth rates ratio the system bifurcates from the stationary state to limit cycle behavior. Well below the bifurcation point, oscillations of the zonal flow amplitude become chaotic. (C) 2003 American Institute of Physics.
引用
收藏
页码:4913 / 4915
页数:3
相关论文
共 50 条
  • [31] CRITICAL BEHAVIOR OF RANDOM RESISTOR NETWORKS NEAR PERCOLATION THRESHOLD
    FISCH, R
    HARRIS, AB
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (03): : 359 - 360
  • [32] Islands in zonal flow
    Spall, MA
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2003, 33 (12) : 2689 - 2701
  • [33] NUMERICAL STUDY OF AN INTERACTING ROSSBY WAVE AND BAROTROPIC ZONAL FLOW NEAR A CRITICAL LEVEL
    GEISLER, JE
    DICKINSON, RE
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 1974, 31 (04) : 946 - 955
  • [34] Flow behavior near an infinite droplet stream
    Connon, CS
    DunnRankin, D
    EXPERIMENTS IN FLUIDS, 1996, 21 (02) : 80 - 86
  • [35] Zonal RANS/LES coupling simulation of a transitional and separated flow around an airfoil near stall
    Richez, F.
    Mary, I.
    Gleize, V.
    Basdevant, C.
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2008, 22 (3-4) : 305 - 315
  • [36] STRUCTURE OF A MEDIUM NEAR THE FLOW THRESHOLD IN THE TWO-DIMENSIONAL CASE
    LUKYANETS, SP
    SNARSKII, AA
    PISMA V ZHURNAL TEKHNICHESKOI FIZIKI, 1988, 14 (14): : 1311 - 1314
  • [37] Zonal RANS/LES coupling simulation of a transitional and separated flow around an airfoil near stall
    F. Richez
    I. Mary
    V. Gleize
    C. Basdevant
    Theoretical and Computational Fluid Dynamics, 2008, 22 : 305 - 315
  • [38] Intermittent behavior near the synchronization threshold in system with fluctuating control parameter
    Hramov, Alexander E.
    Koronovskii, Alexey A.
    Kurovskaya, Maria K.
    EPL, 2014, 105 (05)
  • [39] SIMPLE-MODEL FOR THE BENARD INSTABILITY WITH HORIZONTAL FLOW NEAR THRESHOLD
    BRAND, HR
    DEISSLER, RJ
    AHLERS, G
    PHYSICAL REVIEW A, 1991, 43 (08): : 4262 - 4268
  • [40] NEAR-THRESHOLD BEHAVIOR OF THE K-SHELL SATELLITES IN CO
    REICH, T
    HEIMANN, PA
    PETERSEN, BL
    HUDSON, E
    HUSSAIN, Z
    SHIRLEY, DA
    PHYSICAL REVIEW A, 1994, 49 (06): : 4570 - 4577