Infinitely Many Hypohamiltonian Cubic Graphs of Girth 7

被引:10
|
作者
Macajova, Edita [1 ]
Skoviera, Martin [1 ]
机构
[1] Comenius Univ, Dept Comp Sci, Fac Math Phys & Informat, Bratislava 84248, Slovakia
关键词
Hypohamiltonian; Girth; Cubic graph; SNARKS;
D O I
10.1007/s00373-010-0968-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The trivalent Coxeter graph of order 28 is the only known hypohamiltonian cubic graph of girth 7. In this paper we will construct an infinite family of hypohamiltonian cubic graphs of girth 7 and cyclic connectivity 6. The existence of cyclically 7-edge-connected hypohamiltonian cubic graphs other than the Coxeter graph, however, remains open.
引用
收藏
页码:231 / 241
页数:11
相关论文
共 50 条
  • [1] Infinitely Many Hypohamiltonian Cubic Graphs of Girth 7
    Edita Máčajová
    Martin Škoviera
    Graphs and Combinatorics, 2011, 27 : 231 - 241
  • [2] Infinitely many planar cubic hypohamiltonian graphs of girth 5
    Goedgebeur, Jan
    Zamfirescu, Carol T.
    JOURNAL OF GRAPH THEORY, 2018, 88 (01) : 40 - 45
  • [3] Hypohamiltonian Planar Cubic Graphs with Girth 5
    McKay, Brendan D.
    JOURNAL OF GRAPH THEORY, 2017, 85 (01) : 7 - 11
  • [4] On cubic planar hypohamiltonian and hypotraceable graphs
    Araya, Makoto
    Wiener, Gabor
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [5] PLANAR CUBIC HYPOHAMILTONIAN AND HYPOTRACEABLE GRAPHS
    THOMASSEN, C
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1981, 30 (01) : 36 - 44
  • [6] Cubic vertices in planar hypohamiltonian graphs
    Zamfirescu, Carol T.
    JOURNAL OF GRAPH THEORY, 2019, 90 (02) : 189 - 207
  • [7] Domination in Cubic Graphs of Large Girth
    Rautenbach, Dieter
    Reed, Bruce
    COMPUTATIONAL GEOMETRY AND GRAPH THEORY, 2008, 4535 : 186 - +
  • [8] Symmetric cubic graphs of small girth
    Conder, Marston
    Nedela, Roman
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (05) : 757 - 768
  • [9] On Hypohamiltonian and Almost Hypohamiltonian Graphs
    Zamfirescu, Carol T.
    JOURNAL OF GRAPH THEORY, 2015, 79 (01) : 63 - 81
  • [10] Cayley type graphs and cubic graphs of large girth
    Bray, J
    Parker, C
    Rowley, P
    DISCRETE MATHEMATICS, 2000, 214 (1-3) : 113 - 121