Doping-Assisted Phase Changing Effect on MoS2 Towards Hydrogen Evolution Reaction in Acidic and Alkaline pH

被引:41
|
作者
Bolar, Saikat [1 ,2 ]
Shit, Subhasis [1 ,2 ]
Murmu, Naresh C. [1 ,2 ]
Kuila, Tapas [1 ,2 ]
机构
[1] Cent Mech Engn Res Inst, CSIR, Surface Engn & Tribol Div, Durgapur 713209, India
[2] Acad Sci & Innovat Res AcSIR, CSIR CMERI Campus, Durgapur 713209, India
关键词
MoS2; anion doping; hydrogen evolution reaction; electrochemical impedance spectroscopy; distribution of relaxation time; OCTAHEDRAL COORDINATION GEOMETRY; ACTIVE EDGE SITES; MOLYBDENUM-DISULFIDE; ELECTROCATALYTIC ACTIVITY; TRANSITION; NANOSHEETS; OPTIMIZATION; CATALYST; DOPANTS;
D O I
10.1002/celc.201901870
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Hydrogen evolution reaction (HER) was improved through nitrogen (N) doping in molybdenum disulfide (MoS2) due to the formation of 1T-metallic phase as compared to the thermodynamically stable 2H-semiconducting phase. Generally, the phase transition of MoS2 from semiconducting 2H to metallic 1T was carried out by chemical intercalation method. A facile solvothermal synthetic procedure is used to organize 1T@2H MoS2 nanoflower by incorporating N in MoS2 crystal lattice which improved the catalytic activity with the generation of metallic property of MoS2. Optimized N doping is an effective strategy for the development of mixed phase MoS2. Physicochemical characterization techniques confirmed the formation of hybrid phase (1T@2H) MoS2 by N incorporation. A tuned dopant concentration in MoS2 crystal lattice effectively enhanced the catalytic performance by modifying the physical and chemical properties. Moreover, optimal N doped MoS2 offered a very low overpotential of similar to 108 and similar to 141 mV to reach the benchmarking current density of 10 mA cm(-2) for HER in acidic and basic medium, respectively. This work elucidated a rational implantation of phase engineering, which is an efficient strategy to develop efficient electrocatalysts, shedding light on the improvement of transition metal-based electrocatalyst in renewable energy technologies.
引用
收藏
页码:336 / 346
页数:11
相关论文
共 50 条
  • [31] Synergistic Doping and Intercalation: Realizing Deep Phase Modulation on MoS2 Arrays for High-Efficiency Hydrogen Evolution Reaction
    Deng, Shengjue
    Luo, Mi
    Ai, Changzhi
    Zhang, Yan
    Liu, Bo
    Huang, Lei
    Jiang, Zheng
    Zhang, Qinghua
    Gu, Lin
    Lin, Shiwei
    Wang, Xiuli
    Yu, Lei
    Wen, Jianguo
    Wang, Jiaao
    Pan, Guoxiang
    Xia, Xinhui
    Tu, Jiangping
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (45) : 16289 - 16296
  • [32] Synergistic Low-Pt Modification and Ni Doping Facilitate the MoS2 Phase Transition for Accelerating the Hydrogen Evolution Reaction
    Tang, Jun
    Huang, Jinzhao
    Zhang, Sixuan
    Liu, Zehui
    Deng, Xiaolong
    ENERGY & FUELS, 2023, 37 (19) : 14914 - 14921
  • [33] Doping-Induced Enhancement of Hydrogen Evolution at MoS2 Electrodes
    Hanslin, Sander O.
    Jonsson, Hannes
    Akola, Jaakko
    CHEMPHYSCHEM, 2024, 25 (20)
  • [34] Few-layer FePS3 decorated with thin MoS2 nanosheets for efficient hydrogen evolution reaction in alkaline and acidic media
    Huang, Hongjiao
    Song, Junnan
    Yu, Deshuang
    Hao, Yanan
    Wang, Yonghan
    Peng, Shengjie
    APPLIED SURFACE SCIENCE, 2020, 525
  • [35] Hydrogen evolution reaction catalyzed by MoS2/CoS2 supported on nanocarbon hybrid in acidic medium
    Kunhiraman, Aruna K.
    Prabhu, S. Akash
    Puthalath, Muhammad Rahees
    Rakkesh, R. Ajay
    Hochgesang, Adrian
    SURFACES AND INTERFACES, 2023, 42
  • [36] Microwave-Assisted vs. Conventional Hydrothermal Synthesis of MoS2 Nanosheets: Application towards Hydrogen Evolution Reaction
    Solomon, Getachew
    Mazzaro, Raffaello
    Morandi, Vittorio
    Concina, Isabella
    Vomiero, Alberto
    CRYSTALS, 2020, 10 (11): : 1 - 12
  • [37] Fabrication of heterogeneous interface and phosphorus doping in MoS2 for efficient hydrogen evolution in both acid and alkaline electrolytes
    Xu, Qiuchen
    Liu, Yanxia
    Tian, Zhangmin
    Shi, Yingying
    Wang, Zhen
    Zheng, Wenjun
    ELECTROCHIMICA ACTA, 2021, 385
  • [38] Energy Level Engineering of MoS2 by Transition-Metal Doping for Accelerating Hydrogen Evolution Reaction
    Shi, Yi
    Zhou, Yue
    Yang, Dong-Rui
    Xu, Wei-Xuan
    Wang, Chen
    Wang, Feng-Bin
    Xu, Jing-Juan
    Xia, Xing-Hua
    Chen, Hong-Yuan
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (43) : 15479 - 15485
  • [39] Triggering basal plane active sites of monolayer MoS2 for the hydrogen evolution reaction by phosphorus doping
    Wenwu Shi
    Shiyun Wu
    Zhiguo Wang
    Journal of Nanoparticle Research, 2018, 20
  • [40] Triggering basal plane active sites of monolayer MoS2 for the hydrogen evolution reaction by phosphorus doping
    Shi, Wenwu
    Wu, Shiyun
    Wang, Zhiguo
    JOURNAL OF NANOPARTICLE RESEARCH, 2018, 20 (10)