Symmetric ground state solution for a non-linear Schrodinger equation with non-local regional diffusion

被引:7
|
作者
Torres Ledesma, Cesar E. [1 ]
机构
[1] Univ Nacl Trujillo, Dept Matemat, Trujillo, Peru
关键词
Regional fractional Laplacian; fractional Sobolev spaces; mountain pass theorem; rearrangement method; 45G05; 35J60; 35B25; POSITIVE SOLUTIONS; MULTIPLICITY; UNIQUENESS; EXISTENCE; WAVES;
D O I
10.1080/17476933.2016.1178730
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we are interested in the non-linear Schrodinger equation with non-local regional diffussion (-Delta)(rho)(alpha)u + u = f(x, u) in R-n, u is an element of H-alpha(R-n), where f is a super-linear sub-critical function, (-Delta)(rho)(alpha) is a variational version of the regional Laplacian, whose range of scope is a ball with radius rho(x) > 0. We study the existence of a ground state solution, furthermore we prove that the ground state level is achieved by a radially symmetric solution. The proof is carried out by using variational methods jointly with rearrangement arguments.
引用
收藏
页码:1375 / 1388
页数:14
相关论文
共 50 条
  • [31] From the Boltzmann equation with non-local correlations to a standard non-linear Fokker-Planck equation
    Deppman, Airton
    Golmankhaneh, Alireza Khalili
    Megias, Eugenio
    Pasechnik, Roman
    PHYSICS LETTERS B, 2023, 839
  • [32] Numerical solution of a non-local fractional convection-diffusion equation
    Osorio, F. C.
    Amador, P. A.
    Bedoya, C. A.
    ENTRE CIENCIA E INGENIERIA, 2024, 18 (35): : 25 - 31
  • [33] Weakly non-local fluid mechanics:: the Schrodinger equation
    Ván, P
    Fülöp, T
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2066): : 541 - 557
  • [34] A PERIODICAL SOLUTION TO DIFFUSION EQUATION WITH A NON-LINEAR BOUNDARY CONDITION
    KOCHINA, NN
    DOKLADY AKADEMII NAUK SSSR, 1968, 179 (06): : 1297 - &
  • [35] A NUMERICAL PREDICTABILITY PROBLEM IN SOLUTION OF THE NON-LINEAR DIFFUSION EQUATION
    BROWN, PS
    PANDOLFO, JP
    MONTHLY WEATHER REVIEW, 1982, 110 (09) : 1214 - 1223
  • [36] AN APPROXIMATE SOLUTION TO A NON-LINEAR DIFFUSION EQUATION (THERMAL CONDUCTION)
    LITOVSKII, MA
    MALKOVICH, RS
    ZHURNAL TEKHNICHESKOI FIZIKI, 1980, 50 (09): : 2007 - 2011
  • [38] LARGE TIME SOLUTION OF AN INHOMOGENEOUS NON-LINEAR DIFFUSION EQUATION
    GRUNDY, RE
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 386 (1791): : 347 - 372
  • [39] APPROXIMATE SOLUTION OF THE NON-LINEAR DIFFUSION EQUATION OF MULTIPLE ORDERS
    Wu, Fei
    Yang, Xiao-Jun
    THERMAL SCIENCE, 2016, 20 : S683 - S687
  • [40] LARGE-TIME SOLUTION OF A NON-LINEAR DIFFUSION EQUATION
    GRUNDY, RE
    MCLAUGHLIN, R
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 381 (1781): : 395 - 406