Region of variability for certain classes of univalent functions satisfying differential inequalities

被引:9
|
作者
Ponnusamy, S. [2 ]
Vasudevarao, A. [2 ]
Vuorinen, M. [1 ]
机构
[1] Univ Turku, Dept Math, SF-20500 Turku, Finland
[2] Indian Inst Technol, Dept Math, Madras 600036, Tamil Nadu, India
基金
芬兰科学院;
关键词
analytic; univalent; starlike; convex; variability region; CONVEX-FUNCTIONS;
D O I
10.1080/17476930802657616
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For complex numbers alpha, beta and M is an element of R with 0 < M <= vertical bar alpha vertical bar and vertical bar beta vertical bar <= 1, let B (alpha, beta, M) be the class of analytic and univalent functions f in the unit disk D with f(0) = 0, f '(0) = alpha and f ''(0) M beta satisfying vertical bar zf ''(z) vertical bar <= M, z is an element of D. Let P(alpha, M) be the another class of analytic and univalent functions in D with f(0)=0, f '(0)=alpha satisfying Re(zf ''(z)) > -M, z is an element of D, where alpha is an element of C\{0}, 0 < M <= 1/log 4. For any fixed z(0) is an element of D, and lambda is an element of D we shall determine the region of variability V(j) (j=1, 2) for f '(z(0)) when f ranges over the class S(j) (j=1, 2), where S(1) = {f is an element of B(alpha, beta, M) : f'''(0) = M(1 - vertical bar beta vertical bar(2))lambda} and S(2) = {f is an element of P(alpha, M) : f ''(0) = 2M lambda}. In the final section we graphically illustrate the region of variability for several sets of parameters.
引用
收藏
页码:899 / 922
页数:24
相关论文
共 50 条
  • [21] INTEGRAL-REPRESENTATION OF FUNCTIONS IN CERTAIN CLASSES OF UNIVALENT-FUNCTIONS
    SINGH, P
    SINGH, P
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1981, 12 (04): : 459 - 471
  • [22] Coefficient Inequalities for Classes of Univalent Functions Defined by q - Derivatives
    Aouf, M. K.
    Mostafa, A. O.
    Cho, N. E.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [23] RADII OF CONVEXITY FOR CERTAIN CLASSES OF UNIVALENT ANALYTIC-FUNCTIONS
    JUNEJA, OP
    MOGRA, ML
    PACIFIC JOURNAL OF MATHEMATICS, 1978, 78 (02) : 359 - 368
  • [24] CONVOLUTIONS OF CERTAIN CLASSES OF UNIVALENT-FUNCTIONS WITH NEGATIVE COEFFICIENTS
    PADMANABHAN, KS
    GANESAN, MS
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1988, 19 (09): : 880 - 889
  • [25] Coefficient bounds for certain classes of bi-univalent functions
    Frasin, B. A.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2014, 43 (03): : 383 - 389
  • [26] ON CERTAIN CLASSES OF UNIVALENT MEROMORPHIC FUNCTIONS ASSOCIATED WITH INTEGRAL OPERATORS
    Ghanim, F.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2014, 4 (01): : 45 - 49
  • [27] COEFFICIENT INEQUALITY FOR CERTAIN CLASSES OF UNIVALENT FUNCTIONS - PRELIMINARY REPORT
    EENIGENB.PJ
    SILVIA, EM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A121 - A121
  • [28] RADII OF CONVEXITY FOR CERTAIN CLASSES OF UNIVALENT FUNCTIONS - PRELIMINARY REPORT
    MOGRA, ML
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (06): : A625 - A625
  • [29] Bohr radius for certain classes of starlike and convex univalent functions
    Allu, Vasudevarao
    Halder, Himadri
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 493 (01)
  • [30] Region of Variability for Exponentially Convex Univalent Functions
    Saminathan, Ponnusamy
    Allu, Vasudevarao
    Vuorinen, M.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2011, 5 (03) : 955 - 966