Region of variability for certain classes of univalent functions satisfying differential inequalities

被引:9
|
作者
Ponnusamy, S. [2 ]
Vasudevarao, A. [2 ]
Vuorinen, M. [1 ]
机构
[1] Univ Turku, Dept Math, SF-20500 Turku, Finland
[2] Indian Inst Technol, Dept Math, Madras 600036, Tamil Nadu, India
基金
芬兰科学院;
关键词
analytic; univalent; starlike; convex; variability region; CONVEX-FUNCTIONS;
D O I
10.1080/17476930802657616
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For complex numbers alpha, beta and M is an element of R with 0 < M <= vertical bar alpha vertical bar and vertical bar beta vertical bar <= 1, let B (alpha, beta, M) be the class of analytic and univalent functions f in the unit disk D with f(0) = 0, f '(0) = alpha and f ''(0) M beta satisfying vertical bar zf ''(z) vertical bar <= M, z is an element of D. Let P(alpha, M) be the another class of analytic and univalent functions in D with f(0)=0, f '(0)=alpha satisfying Re(zf ''(z)) > -M, z is an element of D, where alpha is an element of C\{0}, 0 < M <= 1/log 4. For any fixed z(0) is an element of D, and lambda is an element of D we shall determine the region of variability V(j) (j=1, 2) for f '(z(0)) when f ranges over the class S(j) (j=1, 2), where S(1) = {f is an element of B(alpha, beta, M) : f'''(0) = M(1 - vertical bar beta vertical bar(2))lambda} and S(2) = {f is an element of P(alpha, M) : f ''(0) = 2M lambda}. In the final section we graphically illustrate the region of variability for several sets of parameters.
引用
收藏
页码:899 / 922
页数:24
相关论文
共 50 条
  • [1] SOME PROPERTIES FOR CERTAIN CLASSES OF UNIVALENT FUNCTIONS DEFINED BY DIFFERENTIAL INEQUALITIES
    彭志刚
    钟广祯
    Acta Mathematica Scientia(English Series), 2017, 37 (01) : 69 - 78
  • [2] SOME PROPERTIES FOR CERTAIN CLASSES OF UNIVALENT FUNCTIONS DEFINED BY DIFFERENTIAL INEQUALITIES
    彭志刚
    钟广祯
    Acta Mathematica Scientia, 2017, (01) : 69 - 78
  • [3] SOME PROPERTIES FOR CERTAIN CLASSES OF UNIVALENT FUNCTIONS DEFINED BY DIFFERENTIAL INEQUALITIES
    Peng, Zhigang
    Zhong, Gangzhen
    ACTA MATHEMATICA SCIENTIA, 2017, 37 (01) : 69 - 78
  • [4] On Classes of Meromorphic Locally Univalent Functions Defined by Differential Inequalities
    Lee, See Keong
    Ponnusamy, Saminathan
    Wirths, Karl-Joachim
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (01) : 149 - 158
  • [5] On Classes of Meromorphic Locally Univalent Functions Defined by Differential Inequalities
    See Keong Lee
    Saminathan Ponnusamy
    Karl-Joachim Wirths
    Bulletin of the Iranian Mathematical Society, 2020, 46 : 149 - 158
  • [6] Refined Bohr inequalities for certain classes of functions: analytic, univalent, and convex
    Ahammed, Sabir
    Ahamed, Molla Basir
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (01): : 9 - 25
  • [7] Differential Inequalities and Univalent Functions
    Ali, Rosihan M.
    Obradovic, Milutin
    Ponnusamy, Saminathan
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2019, 40 (09) : 1242 - 1249
  • [8] CERTAIN CLASSES OF REGULAR UNIVALENT FUNCTIONS
    KARUNAKARAN, V
    PACIFIC JOURNAL OF MATHEMATICS, 1975, 61 (01) : 173 - 182
  • [9] Differential Inequalities and Univalent Functions
    Rosihan M. Ali
    Milutin Obradović
    Saminathan Ponnusamy
    Lobachevskii Journal of Mathematics, 2019, 40 : 1242 - 1249
  • [10] Coefficient inequalities for certain univalent functions
    Sekine, T
    Owa, S
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 1999, 2 (04): : 535 - 544