Resonant Raman scattering by strained and relaxed Ge quantum dots

被引:0
|
作者
Milekhin, AG [1 ]
Niukiforov, AI [1 ]
Ladanov, M [1 ]
Pchelyakov, OP [1 ]
Tenne, DA [1 ]
Schulze, S [1 ]
Zahn, DRT [1 ]
机构
[1] Tech Univ Chemnitz, Inst Phys, D-09107 Chemnitz, Germany
来源
QUANTUM CONFINED SEMICONDUCTOR NANOSTRUCTURES | 2003年 / 737卷
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fundamental vibrations in Ge/Si structures with strained and relaxed Ge quantum dots (QDs) grown by molecular beam epitaxy were investigated using resonant Raman spectroscopy. Transmission electron microscopy experiments show that the strained Ge QDs are typical "hut clusters" with base size of 15nm and a height of 2nm. A two mode distribution in size (100-200nm and 3-6nm) is found for relaxed QDs. The Raman efficiencies of the Ge optical phonons as a function of excitation energy reveal maxima at 2.35-2.41eV attributed to the E-0 resonance in Ge QDs due to electronic confinement. The frequency positions of optical phonons localized in Ge "hut clusters" under non-resonant conditions correspond to fully strained Ge QDs while the frequency position of optical phonons in relaxed Ge QDs corresponds to the value in bulk Ge. With increasing excitation energy (2.5-2.7eV) the position of the Ge optical phonons shifts downwards due to size-confinement effect of optical phonons in strained and relaxed Ge QDs, indicating the presence of a QD size distribution in Ge dot structures.
引用
收藏
页码:135 / 140
页数:6
相关论文
共 50 条
  • [41] Optical phonons and resonant Raman scattering in II-VI spheroidal quantum dots
    Trallero-Giner, C
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2004, 241 (03): : 572 - 578
  • [42] Resonant Raman scattering of ZnS, ZnO, and ZnS/ZnO core/shell quantum dots
    A. G. Milekhin
    N. A. Yeryukov
    L. L. Sveshnikova
    T. A. Duda
    C. Himcinschi
    E. I. Zenkevich
    D. R. T. Zahn
    Applied Physics A, 2012, 107 : 275 - 278
  • [43] Resonant Raman scattering off neutral quantum dots -: art. no. 155306
    Delgado, A
    Gonzalez, A
    Menéndez-Proupin, E
    PHYSICAL REVIEW B, 2002, 65 (15): : 1553061 - 15530611
  • [44] Resonant Raman scattering of ZnS, ZnO, and ZnS/ZnO core/shell quantum dots
    Milekhin, A. G.
    Yeryukov, N. A.
    Sveshnikova, L. L.
    Duda, T. A.
    Himcinschi, C.
    Zenkevich, E. I.
    Zahn, D. R. T.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2012, 107 (02): : 275 - 278
  • [45] Photoluminescence from Tensile-Strained Ge Quantum Dots
    Chen, Qimiao
    Chen, Xiren
    Zhang, Zhenpu
    Song, Yuxin
    Wang, Peng
    Liu, Juanjuan
    Lu, Pengfei
    Li, Yaoyao
    Gong, Qian
    Wang, Shumin
    2016 IEEE PHOTONICS SOCIETY SUMMER TOPICAL MEETING SERIES (SUM), 2016, : 120 - 121
  • [46] Relaxed and Strained Patterned Germanium-Tin Structures: A Raman Scattering Study
    Cheng, Ran
    Wang, Wei
    Gong, Xiao
    Sun, Linfeng
    Guo, Pengfei
    Hu, Hailong
    Shen, Zexiang
    Han, Genquan
    Yeo, Yee-Chia
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2013, 2 (04) : P138 - P145
  • [47] MBE growth of tensile-strained Ge quantum wells and quantum dots
    Yijie Huo
    Hai Lin
    Robert Chen
    Yiwen Rong
    Theodore I. Kamins
    James S. Harris
    Frontiers of Optoelectronics, 2012, 5 (1) : 112 - 116
  • [48] Single and double hole quantum dots in strained Ge/SiGe quantum wells
    Hardy, Will J.
    Harris, C. Thomas
    Sue, Yi-Hsin
    Chuang, Yen
    Moussa, Jonathon
    Maurer, Leon N.
    Li, Jiun-Yun
    Lu, Tzu-Ming
    Luhman, Dwight R.
    NANOTECHNOLOGY, 2019, 30 (21)
  • [49] MBE growth of tensile-strained Ge quantum wells and quantum dots
    Yijie HUO
    Hai LIN
    Robert CHEN
    Yiwen RONG
    Theodore IKAMINS
    James SHARRIS
    Frontiers of Optoelectronics, 2012, 5 (01) : 112 - 116
  • [50] Resonant Raman scattering and atomic force microscopy of InGaAs/GaAs multilayer nanostructures with quantum dots
    M. Ya. Valakh
    V. V. Strelchuk
    A. F. Kolomys
    Yu. I. Mazur
    Z. M. Wang
    M. Xiao
    G. J. Salamo
    Semiconductors, 2005, 39 : 127 - 131