Topological domains in mammalian genomes identified by analysis of chromatin interactions

被引:4738
作者
Dixon, Jesse R. [1 ,2 ,3 ]
Selvaraj, Siddarth [1 ,4 ]
Yue, Feng [1 ]
Kim, Audrey [1 ]
Li, Yan [1 ]
Shen, Yin [1 ]
Hu, Ming [5 ]
Liu, Jun S. [5 ]
Ren, Bing [1 ,6 ]
机构
[1] Ludwig Inst Canc Res, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Med Scientist Training Program, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Biomed Sci Grad Program, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Bioinformat & Syst Biol Grad Program, La Jolla, CA 92093 USA
[5] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA
[6] Univ Calif San Diego, Sch Med, UCSD Moores Canc Ctr, Inst Genom Med,Dept Cellular & Mol Med, La Jolla, CA 92093 USA
关键词
EMBRYONIC STEM-CELLS; NUCLEAR LAMINA INTERACTIONS; GENE-EXPRESSION; ORGANIZATION; ARCHITECTURE; DROSOPHILA; PLURIPOTENT; PRINCIPLES; BOUNDARY; LOCUS;
D O I
10.1038/nature11082
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The spatial organization of the genome is intimately linked to its biological function, yet our understanding of higher order genomic structure is coarse, fragmented and incomplete. In the nucleus of eukaryotic cells, interphase chromosomes occupy distinct chromosome territories, and numerous models have been proposed for how chromosomes fold within chromosome territories(1). These models, however, provide only few mechanistic details about the relationship between higher order chromatin structure and genome function. Recent advances in genomic technologies have led to rapid advances in the study of three-dimensional genome organization. In particular, Hi-C has been introduced as a method for identifying higher order chromatin interactions genome wide(2). Here we investigate the three-dimensional organization of the human and mouse genomes in embryonic stem cells and terminally differentiated cell types at unprecedented resolution. We identify large, megabase-sized local chromatin interaction domains, which we term 'topological domains', as a pervasive structural feature of the genome organization. These domains correlate with regions of the genome that constrain the spread of heterochromatin. The domains are stable across different cell types and highly conserved across species, indicating that topological domains are an inherent property of mammalian genomes. Finally, we find that the boundaries of topological domains are enriched for the insulator binding protein CTCF, housekeeping genes, transfer RNAs and short interspersed element (SINE) retrotransposons, indicating that these factors may have a role in establishing the topological domain structure of the genome.
引用
收藏
页码:376 / 380
页数:5
相关论文
共 29 条
[1]   Gene insulation. Part I: natural strategies in yeast and Drosophila [J].
Amouyal, Michele .
BIOCHEMISTRY AND CELL BIOLOGY-BIOCHIMIE ET BIOLOGIE CELLULAIRE, 2010, 88 (06) :875-884
[2]   SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state [J].
Bilodeau, Steve ;
Kagey, Michael H. ;
Frampton, Garrett M. ;
Rahl, Peter B. ;
Young, Richard A. .
GENES & DEVELOPMENT, 2009, 23 (21) :2484-2489
[3]   Boundary elements and nuclear organization [J].
Capelson, M ;
Corces, VG .
BIOLOGY OF THE CELL, 2004, 96 (08) :617-629
[4]   Chromosome Territories [J].
Cremer, Thomas ;
Cremer, Marion .
COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2010, 2 (03) :a003889
[5]   RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae [J].
Donze, D ;
Kamakaka, RT .
EMBO JOURNAL, 2001, 20 (03) :520-531
[6]   tRNA genes protect a reporter gene from epigenetic silencing in mouse cells [J].
Ebersole, Thomas ;
Kim, Jung-Hyun ;
Samoshkin, Alexander ;
Kouprina, Natalay ;
Pavlicek, Adam ;
White, Robert J. ;
Larionov, Vladimir .
CELL CYCLE, 2011, 10 (16) :2779-2791
[7]   Ring1B Compacts Chromatin Structure and Represses Gene Expression Independent of Histone Ubiquitination [J].
Eskeland, Ragnhild ;
Leeb, Martin ;
Grimes, Graeme R. ;
Kress, Clemence ;
Boyle, Shelagh ;
Sproul, Duncan ;
Gilbert, Nick ;
Fan, Yuhong ;
Skoultchi, Arthur I. ;
Wutz, Anton ;
Bickmore, Wendy A. .
MOLECULAR CELL, 2010, 38 (03) :452-464
[8]   Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions [J].
Guelen, Lars ;
Pagie, Ludo ;
Brasset, Emilie ;
Meuleman, Wouter ;
Faza, Marius B. ;
Talhout, Wendy ;
Eussen, Bert H. ;
de Klein, Annelies ;
Wessels, Lodewyk ;
de Laat, Wouter ;
van Steensel, Bas .
NATURE, 2008, 453 (7197) :948-U83
[9]   CTCF-mediated functional chromatin interactome in pluripotent cells [J].
Handoko, Lusy ;
Xu, Han ;
Li, Guoliang ;
Ngan, Chew Yee ;
Chew, Elaine ;
Schnapp, Marie ;
Lee, Charlie Wah Heng ;
Ye, Chaopeng ;
Ping, Joanne Lim Hui ;
Mulawadi, Fabianus ;
Wong, Eleanor ;
Sheng, Jianpeng ;
Zhang, Yubo ;
Poh, Thompson ;
Chan, Chee Seng ;
Kunarso, Galih ;
Shahab, Atif ;
Bourque, Guillaume ;
Cacheux-Rataboul, Valere ;
Sung, Wing-Kin ;
Ruan, Yijun ;
Wei, Chia-Lin .
NATURE GENETICS, 2011, 43 (07) :630-U198
[10]   Distinct Epigenomic Landscapes of Pluripotent and Lineage-Committed Human Cells [J].
Hawkins, R. David ;
Hon, Gary C. ;
Lee, Leonard K. ;
Ngo, QueMinh ;
Lister, Ryan ;
Pelizzola, Mattia ;
Edsall, Lee E. ;
Kuan, Samantha ;
Luu, Ying ;
Klugman, Sarit ;
Antosiewicz-Bourget, Jessica ;
Ye, Zhen ;
Espinoza, Celso ;
Agarwahl, Saurabh ;
Shen, Li ;
Ruotti, Victor ;
Wang, Wei ;
Stewart, Ron ;
Thomson, James A. ;
Ecker, Joseph R. ;
Ren, Bing .
CELL STEM CELL, 2010, 6 (05) :479-491