Performance of Ensemble Learning Classifiers on Malignant-Benign Classification of Pulmonary Nodules

被引:0
|
作者
Tartar, Ahmet [1 ]
Akan, Aydin [2 ]
机构
[1] Istanbul Univ, Muhendislik Bilimleri Bolumu, TR-34320 Istanbul, Turkey
[2] Istanbul Univ, Elekt Elekt Muhendisligi Bolumu, TR-34320 Istanbul, Turkey
关键词
computer-aided diagnosis system; pulmonary nodules; malignant-benign classification; ensemble learning classifiers;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Computer-aided detection systems can help radiologists to detect pulmonary nodules at an early stage. In this study, a novel Computer-aided Diagnosis system (CAD) is proposed for the classification of pulmonary nodules as malignant and benign. Proposed CAD system, providing an important support to radiologists at the diagnosis process of the disease, achieves high classification performance using ensemble learning classifiers.
引用
收藏
页码:722 / 725
页数:4
相关论文
共 50 条
  • [21] Identification of Benign and Malignant Lung Nodules in CT Images Based on Ensemble Learning Method
    Xu, Yifei
    Wang, Shijie
    Sun, Xiaoqian
    Yang, Yanjun
    Fan, Jiaxing
    Jin, Wenwen
    Li, Yingyue
    Su, Fangchu
    Zhang, Weihua
    Cui, Qingli
    Hu, Yanhui
    Wang, Sheng
    Zhang, Jianhua
    Chen, Chuanliang
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2022, 14 (01) : 130 - 140
  • [22] Identification of Benign and Malignant Lung Nodules in CT Images Based on Ensemble Learning Method
    Yifei Xu
    Shijie Wang
    Xiaoqian Sun
    Yanjun Yang
    Jiaxing Fan
    Wenwen Jin
    Yingyue Li
    Fangchu Su
    Weihua Zhang
    Qingli Cui
    Yanhui Hu
    Sheng Wang
    Jianhua Zhang
    Chuanliang Chen
    Interdisciplinary Sciences: Computational Life Sciences, 2022, 14 : 130 - 140
  • [23] Explainable Classification of Benign-Malignant Pulmonary Nodules With Neural Networks and Information Bottleneck
    Zhu, Haixing
    Liu, Weipeng
    Gao, Zhifan
    Zhang, Heye
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, : 1 - 12
  • [24] Classification and Segmentation Algorithm in Benign and Malignant Pulmonary Nodules under Different CT Reconstruction
    Lu, Zhiqian
    Long, Feixiang
    He, Xiaodong
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2022, 2022
  • [25] Hybrid classification approach of malignant and benign pulmonary nodules based on topological and histogram features
    Kawata, Y
    Niki, N
    Ohmatsu, H
    Kusumoto, M
    Kakinuma, R
    Mori, K
    Nishiyama, H
    Eguchi, K
    Kaneko, M
    Moriyama, N
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2000, 2000, 1935 : 297 - 306
  • [26] MULTI-SCALE SUPERVISED CONTRASTIVE LEARNING FOR BENIGN-MALIGNANT CLASSIFICATION OF PULMONARY NODULES IN CHEST CT SCANS
    Xu, Xiaoxian
    Wei, Ying
    Zheng, Jie
    Ding, Zhongxiang
    Zhan, Yiqiang
    Zhou, Xiang Sean
    Xue, Zhong
    Shi, Feng
    Shen, Dinggang
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [27] Ultrasound Image Segmentation and Classification of Benign and Malignant Thyroid Nodules on the Basis of Deep Learning
    Yang, Min
    Yee, Austin Lin
    Yu, Jiafeng
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2023, 32 (02)
  • [28] A quantitative method for differentiating malignant and benign pulmonary nodules
    Yu, Zhao
    Dong, Nie Sheng
    Jie, Wu
    Jun, Wang Yuan
    APPLIED SCIENCE, MATERIALS SCIENCE AND INFORMATION TECHNOLOGIES IN INDUSTRY, 2014, 513-517 : 3830 - 3834
  • [29] RNA analysis of patients with benign and malignant pulmonary nodules
    Liu, Guangjie
    Liu, Qingyi
    He, Yutong
    Wei, Lai
    Liang, Di
    Xie, Shaonan
    Zhang, Ning
    Geng, Nan
    Zhang, Liwen
    Huang, Yajie
    Liu, Fang
    ONCOLOGY LETTERS, 2025, 29 (03)
  • [30] Differential Diagnosis of Benign and Malignant Pulmonary Nodules in CT Images Based on Multitask Learning
    Song, Guanghui
    Dai, Qi
    Nie, Yan
    Chen, Genlang
    CURRENT MEDICAL IMAGING, 2024, 20