Lie algebras generated by extremal elements

被引:15
|
作者
Cohen, AM
Steinbach, A
Ushirobira, R
Wales, D
机构
[1] TUE, Fac Wiskunde & Informat, NL-5600 MB Eindhoven, Netherlands
[2] Univ Giessen, Math Inst, D-35392 Giessen, Germany
[3] Univ Bourgogne, Lab Gevrey Math Phys, F-21078 Dijon, France
[4] CALTECH, Sloan Lab, Pasadena, CA 91125 USA
关键词
D O I
10.1006/jabr.2000.8508
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Lie algebras generated by extremal elements (i.e., elements spanning inner ideals) over a field of characteristic distinct from 2. There is an associative bilinear form on such a Lie algebra; we study its connections with the Killing form. Any Lie algebra generated by a finite number of extremal elements is finite dimensional. The minimal numbers of extremal generators for the Lie algebras of type A(n) (n greater than or equal to 1), B-n (n greater than or equal to 3), C-n (n greater than or equal to 2), D-n (n greater than or equal to 4), E-n (n = 6, 7, 8), F-4 and G(2) are shown to be n+1, n+1, 2n, n, 5, 5, and 4 in the respective cases. These results are related to group theoretic ones for the corresponding Chevalley groups. (C) 2001 Academic Press.
引用
收藏
页码:122 / 154
页数:33
相关论文
共 50 条
  • [41] C*-algebras generated by scaling elements
    Katsura, Takeshi
    JOURNAL OF OPERATOR THEORY, 2006, 55 (01) : 213 - 222
  • [42] ALGEBRAS GENERATED BY TWO QUADRATIC ELEMENTS
    Drensky, Vesselin
    Szigeti, Jeno
    van Wyk, Leon
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (04) : 1344 - 1355
  • [43] CASIMIR ELEMENTS OF EPSILON-LIE ALGEBRAS
    SCHEUNERT, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (11) : 2671 - 2680
  • [44] SEMISIMPLE CYCLIC ELEMENTS IN SEMISIMPLE LIE ALGEBRAS
    Elashvili, A. G.
    Jibladze, M.
    Kac, V. G.
    TRANSFORMATION GROUPS, 2022, 27 (02) : 429 - 470
  • [45] REGULAR ELEMENTS OF A REDUCTIVE LIE-ALGEBRAS
    TAUVEL, P
    BULLETIN DES SCIENCES MATHEMATIQUES, 1989, 113 (01): : 51 - 83
  • [46] THE INDEX OF CENTRALIZERS OF ELEMENTS OF REDUCTIVE LIE ALGEBRAS
    Charbonnel, Jean-Yves
    Moreau, Anne
    DOCUMENTA MATHEMATICA, 2010, 15 : 387 - 421
  • [47] MC elements in pronilpotent DG Lie algebras
    Yekutieli, Amnon
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2012, 216 (11) : 2338 - 2360
  • [48] Lie Identities on Skew Elements in Group Algebras
    Lee, Gregory T.
    Sehgal, Sudarshan K.
    Spinelli, Ernesto
    LIE ALGEBRAS AND RELATED TOPICS, 2015, 652 : 103 - 121
  • [49] SEMISIMPLE CYCLIC ELEMENTS IN SEMISIMPLE LIE ALGEBRAS
    A. G. ELASHVILI
    M. JIBLADZE
    V. G. KAC
    Transformation Groups, 2022, 27 : 429 - 470
  • [50] DEGENERATED ELEMENTS OF THE REPRESENTATIONS OF LIE-ALGEBRAS
    PRASOLOV, VV
    DOKLADY AKADEMII NAUK SSSR, 1983, 268 (01): : 36 - 38