STABLE SELF-SIMILAR BLOW-UP DYNAMICS FOR SLIGHTLY L2 SUPER-CRITICAL NLS EQUATIONS

被引:32
|
作者
Merle, Frank [1 ,2 ]
Raphael, Pierre [3 ]
Szeftel, Jeremie [4 ,5 ]
机构
[1] Univ Cergy Pontoise, Dept LAGA, F-95302 Cergy Pontoise, France
[2] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
[3] Inst Math Toulouse, F-31062 Toulouse 9, France
[4] Ecole Normale Super, Dept Math & Applicat, CNRS, F-75230 Paris 05, France
[5] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
Nonlinear Schrodinger equation; blow up; supercritical; NONLINEAR SCHRODINGER-EQUATION; STABILITY; SINGULARITY; WAVES;
D O I
10.1007/s00039-010-0081-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the focusing nonlinear Schrodinger equations i partial derivative(t)u+ Delta u + u vertical bar u vertical bar (p- 1) = 0 in dimension 1 <= N <= 5 and for slightly L-2 super- critical nonlinearities p(c) < p < (1 + epsilon) p(c) with p(c) = 1+ 4/N and 0 < epsilon << 1. We prove the existence and stability in the energy space H-1 of a self- similar finite- time blow- up dynamics and provide a qualitative description of the singularity formation near the blow-up time.
引用
收藏
页码:1028 / 1071
页数:44
相关论文
共 50 条
  • [41] On Asymptotic Self-Similar Behaviour for a Quasilinear Heat Equation: Single Point Blow-Up
    Galaktionov, V. A.
    Synthesis, 26 (01):
  • [42] On Stable Self-Similar Blow up for Equivariant Wave Maps: The Linearized Problem
    Donninger, Roland
    Schoerkhuber, Birgit
    Aichelburg, Peter C.
    ANNALES HENRI POINCARE, 2012, 13 (01): : 103 - 144
  • [43] Multibump, blow-up, self-similar solutions of the complex Ginzburg-Landau equation
    Budd, CJ
    Rottschäfer, V
    Williams, JF
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2005, 4 (03): : 649 - 678
  • [44] Anomalous exponents of self-similar blow-up solutions to an aggregation equation in odd dimensions
    Huang, Y.
    Witelski, T. P.
    Bertozzi, A. L.
    APPLIED MATHEMATICS LETTERS, 2012, 25 (12) : 2317 - 2321
  • [45] MATCHED ASYMPTOTIC ANALYSIS OF SELF-SIMILAR BLOW-UP PROFILES OF THE THIN FILM EQUATION
    Dallaston, Michael C.
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2019, 72 (02): : 179 - 195
  • [46] EXISTENCE OF SELF-SIMILAR BLOW-UP SOLUTIONS FOR ZAKHAROV EQUATION IN DIMENSION-2 .1.
    GLANGETAS, L
    MERLE, F
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 160 (01) : 173 - 215
  • [47] On Stable Self-Similar Blow up for Equivariant Wave Maps: The Linearized Problem
    Roland Donninger
    Birgit Schörkhuber
    Peter C. Aichelburg
    Annales Henri Poincaré, 2012, 13 : 103 - 144
  • [48] On the stability of self-similar blow-up for C1,α solutions to the incompressible Euler equations on R3
    Elgindi, Tarek M.
    Ghoul, Tej-Eddine
    Masmoudi, Nader
    CAMBRIDGE JOURNAL OF MATHEMATICS, 2021, 9 (04) : 1035 - 1075
  • [49] Asymptotic Self-Similar Blow-Up Profile for Three-Dimensional Axisymmetric Euler Equations Using Neural Networks
    Wang, Y.
    Lai, C. -y.
    Gomez-Serrano, J.
    Buckmaster, T.
    PHYSICAL REVIEW LETTERS, 2023, 130 (24)
  • [50] Near critical, self-similar, blow-up solutions of the generalised Korteweg-de Vries equation: Asymptotics and computations
    Amodio, Pierluigi
    Budd, Chris J.
    Koch, Othmar
    Rottschafer, Vivi
    Settanni, Giuseppina
    Weinmueller, Ewa
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 401