Algebraic analysis for non-regular learning machines

被引:0
|
作者
Watanabe, S [1 ]
机构
[1] Tokyo Inst Technol, Precis & Intelligence Lab, Midori Ku, Yokohama, Kanagawa 223, Japan
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 12 | 2000年 / 12卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hierarchical learning machines are non-regular and non-identifiable statistical models, whose true parameter sets are analytic sets with singularities. Using algebraic analysis, we rigorously prove that the stochastic complexity of a non-identifiable learning machine is asymptotically equal to lambda (1) log n - (m(1) - 1) log log n + const., where n is the number of training samples. Moreover we show that the rational number XI and the integer mi can be algorithmically calculated using resolution of singularities in algebraic geometry. Also we obtain inequalities 0 < <lambda>(1) less than or equal to d/2 and 1 less than or equal to m(1) less than or equal to d, where d is the number of parameters.
引用
收藏
页码:356 / 362
页数:7
相关论文
共 50 条
  • [31] Extended non-regular feedback linearization
    Bolek, W
    Sasiadek, J
    PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 3543 - 3548
  • [32] Eigenvectors and eigenvalues of non-regular graphs
    Zhang, XD
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 409 : 79 - 86
  • [33] On non-regular linearization of nonlinear systems
    Zhong, Jianghua
    Chen, Daizhan
    Hu, Xiaoming
    Proceedings of the 24th Chinese Control Conference, Vols 1 and 2, 2005, : 62 - 67
  • [34] The infrared signatures of non-regular PAHs
    Pauzat, F
    Ellinger, Y
    CHEMICAL PHYSICS, 2002, 280 (03) : 267 - 282
  • [35] On the largest eigenvalue of non-regular graphs
    Liu, Bolian
    Shen, Jian
    Wang, Xinmao
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (06) : 1010 - 1018
  • [36] The best approximation of non-regular functions
    Bernstein, S
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1937, 205 : 825 - 827
  • [37] A countable α-normal non-regular space
    Murtinová, E
    TOPOLOGY PROCEEDINGS, VOL 27, NO 2, 2003, 2003, 27 (02): : 575 - 580
  • [38] A model of components with non-regular protocols
    Südholt, M
    SOFTWARE COMPOSITION, 2005, 3628 : 99 - 113
  • [39] Energies of some Non-regular Graphs
    G. Indulal
    A. Vijayakumar
    Journal of Mathematical Chemistry, 2007, 42 : 377 - 386
  • [40] MINIMUM VARIANCE IN NON-REGULAR ESTIMATION
    DAVIS, RC
    ANNALS OF MATHEMATICAL STATISTICS, 1949, 20 (03): : 465 - 465