On boundary value problems for systems of nonlinear generalized ordinary differential equations

被引:4
|
作者
Ashordia, Malkhaz [1 ,2 ]
机构
[1] I Javakhishvili Tbilisi State Univ, A Razmadze Math Inst, 6 Tamarashvili St, Tbilisi 0177, Georgia
[2] Sukhumi State Univ, 12 Politkovskaya St, Tbilisi 0186, Georgia
基金
美国国家科学基金会;
关键词
system of nonlinear generalized ordinary differential equations; Kurzweil-Stieltjes integral; general boundary value problem; solvability; principle of a priori boundedness; CRITERIA;
D O I
10.21136/CMJ.2017.0144-11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A general theorem (principle of a priori boundedness) on solvability of the boundary value problem dx = dA(t) center dot f(t, x), h(x) = 0 is established, where f: [a, b]xR (n) -> R (n) is a vector-function belonging to the Carath,odory class corresponding to the matrix-function A: [a, b] -> R (nxn) with bounded total variation components, and h: BVs([a, b],R (n) ) -> R (n) is a continuous operator. Basing on the mentioned principle of a priori boundedness, effective criteria are obtained for the solvability of the system under the condition x(t(1)(x)) = B(x) center dot x(t (2)(x))+c (0), where t (i): BVs([a, b],R (n) ) -> [a, b] (i = 1, 2) and B: BVs([a, b], R (n) ) -> R (n) are continuous operators, and c (0) a R (n) .
引用
收藏
页码:579 / 608
页数:30
相关论文
共 50 条