IDENTITIES AND RELATIONS ON THE HERMITE-BASED TANGENT POLYNOMIALS

被引:0
|
作者
Kurt, B. [1 ]
机构
[1] Univ Akdeniz, Dept Math, Fac Educ, TR-07058 Antalya, Turkey
关键词
Bernoulli polynomials and numbers; Stirling numbers of the second kind; Tangent polynomials and numbers; polylogarithm function; Degenerate Bernoulli and Genocchi polynomials; BERNOULLI; EULER;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we introduce and investigate the Hermite-based Tangent numbers and polynomials, Hermite-based modified degenerate-Tangent polynomials, poly-Tangent polynomials. We give some identities and relations for these polynomials.
引用
收藏
页码:321 / 337
页数:17
相关论文
共 50 条
  • [21] Left ventricle Hermite-based segmentation
    Olveres, Jirnena
    Nava, Rodrigo
    Escalante-Ramirez, Boris
    Vallejo, Enrique
    Kybic, Jan
    COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 87 : 236 - 249
  • [22] Certain Properties and Characterizations of Multivariable Hermite-Based Appell Polynomials via Factorization Method
    Zayed, Mohra
    Wani, Shahid Ahmad
    Mahnashi, Ali M.
    FRACTAL AND FRACTIONAL, 2023, 7 (08)
  • [23] Some Identities on Bernoulli and Hermite Polynomials Associated with Jacobi Polynomials
    Kim, Taekyun
    Kim, Dae San
    Dolgy, Dmitry V.
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2012, 2012
  • [24] SOME RELATIONS ON HERMITE-HERMITE MATRIX POLYNOMIALS
    Shehata, Ayman
    Cekim, Bayram
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (01): : 181 - 194
  • [25] Operational Methods and New Identities for Hermite Polynomials
    Cesarano, C.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2017, 12 (03) : 44 - 50
  • [26] Identities for Hermite Base Combinatorial Polynomials and Numbers
    Yuluklu, Eda
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, 2020, 2293
  • [27] Properties and applications of generalized 1-parameter 3-variable Hermite-based Appell polynomials
    Zayed, Mohra
    Wani, Shahid Ahmad
    AIMS MATHEMATICS, 2024, 9 (09): : 25145 - 25165
  • [28] Recurrence relations for exceptional Hermite polynomials
    Gomez-Ullate, D.
    Kasman, A.
    Kuijlaars, A. B. J.
    Milson, R.
    JOURNAL OF APPROXIMATION THEORY, 2016, 204 : 1 - 16
  • [29] Recurrence Relations for Wronskian Hermite Polynomials
    Bonneux, Niels
    Stevens, Marco
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14
  • [30] An algorithm for calculating Hermite-based finite difference weights
    Fornberg, Bengt
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (02) : 801 - 813