Maximum independent sets in 3-and 4-regular Hamiltonian graphs

被引:22
|
作者
Fleischner, Herbert [2 ]
Sabidussi, Gert [1 ]
Sarvanov, Vladimir I. [3 ]
机构
[1] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
[2] Vienna Univ Technol, Inst Informat Syst, A-1040 Vienna, Austria
[3] Natl Acad Sci Belarus, Inst Math, Dept Combinatorial Models & Algorithms, Minsk 220072, BELARUS
基金
加拿大自然科学与工程研究理事会;
关键词
NP-completeness; Maximum independent set; 3-or 4-regular graph; Planar graphs;
D O I
10.1016/j.disc.2010.05.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Smooth 4-regular Hamiltonian graphs are generalizations of cycle-plus-triangles graphs. While the latter have been shown to be 3-choosable, 3-colorability of the former is NP-complete. In this paper we first show that the independent set problem for 3-regular Hamiltonian planar graphs is NP-complete, and using this result we show that this problem is also NP-complete for smooth 4-regular Hamiltonian graphs. We also show that this problem remains NP-complete if we restrict the problem to the existence of large independent sets (i.e., independent sets whose size is at least one third of the order of the graphs). (c) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2742 / 2749
页数:8
相关论文
共 50 条
  • [31] Subgraphs of 4-Regular Planar Graphs
    Chris Dowden
    Louigi Addario-Berry
    Algorithmica, 2011, 61 : 758 - 776
  • [32] Alternating diagrams of 4-regular graphs in 3-space
    Sawollek, J
    TOPOLOGY AND ITS APPLICATIONS, 1999, 93 (03) : 261 - 273
  • [33] INDEPENDENT SETS IN REGULAR GRAPHS
    ROSENFELD, M
    ISRAEL JOURNAL OF MATHEMATICS, 1964, 2 (04) : 262 - +
  • [34] A note on 4-regular distance magic graphs
    Kovar, Petr
    Froncek, Dalibor
    Kovarova, Tereza
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2012, 54 : 127 - 132
  • [35] 4-regular bipartite matching extendable graphs
    Wang, Xiumei
    Feng, Aifen
    Lin, Yixun
    ARS COMBINATORIA, 2013, 110 : 113 - 128
  • [36] H-colorings for 4-regular graphs
    Malnegro, Analen A.
    Ozeki, Kenta
    DISCRETE MATHEMATICS, 2024, 347 (03)
  • [37] Maximum diameter of 3-and 4-colorable graphs
    Czabarka, Eva
    Smith, Stephen J.
    Szekely, Laszlo
    JOURNAL OF GRAPH THEORY, 2023, 102 (02) : 262 - 270
  • [38] On total coloring of 4-regular circulant graphs
    Nigro, Mauro
    Adauto, Matheus Nunes
    Sasaki, Diana
    PROCEEDINGS OF THE XI LATIN AND AMERICAN ALGORITHMS, GRAPHS AND OPTIMIZATION SYMPOSIUM, 2021, 195 : 315 - 324
  • [39] FACTORIZATIONS OF 4-REGULAR GRAPHS AND PETERSENS THEOREM
    KOUIDER, M
    SABIDUSSI, G
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 63 (02) : 170 - 184
  • [40] ON SOME PROPERTIES OF 4-REGULAR PLANE GRAPHS
    HORNAK, M
    JENDROL, S
    JOURNAL OF GRAPH THEORY, 1995, 20 (02) : 163 - 175