Geometry and topology of complex hyperbolic and Cauchy-Riemannian manifolds

被引:4
|
作者
Apanasov, BN
机构
[1] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
[2] Russian Acad Sci, Sobolev Inst Math, Novosibirsk 630090, Russia
基金
美国国家科学基金会;
关键词
D O I
10.1070/RM1997v052n05ABEH002084
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:895 / 928
页数:34
相关论文
共 50 条
  • [21] DIFFERENTIAL GEOMETRY OF FIBRED RIEMANNIAN MANIFOLDS
    FARNSWOR.DL
    THOMPSON, AH
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (01): : 189 - &
  • [22] GEOMETRY OF HOMOGENEOUS RIEMANNIAN-MANIFOLDS
    RODIONOV, ED
    DOKLADY AKADEMII NAUK SSSR, 1989, 306 (05): : 1049 - 1051
  • [23] THE GEOMETRY OF REFLECTIONS ON RIEMANNIAN-MANIFOLDS
    VANHECKE, L
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS /, 1988, : 387 - 400
  • [24] GEOMETRY OF ISOPARAMETRIC HYPERSURFACES IN RIEMANNIAN MANIFOLDS
    Ge, Jianquan
    Tang, Zizhou
    ASIAN JOURNAL OF MATHEMATICS, 2014, 18 (01) : 117 - 125
  • [25] Stabilization of transmission hyperbolic equations on Riemannian manifolds
    Zhang Wen
    Zhang Zhifei
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 2670 - 2675
  • [26] Cauchy's Problem for hyperbolic equations on a Riemannian manifold
    Wamon, F.
    1600, (390):
  • [27] TOPOLOGY OF RIEMANNIAN MANIFOLDS WITH SMALL CURVATURE AND DIAMETER
    GROMOV, M
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (05): : A592 - A592
  • [28] Hyperbolic Procrustes Analysis Using Riemannian Geometry
    Lin, Ya-Wei Eileen
    Kluger, Yuval
    Talmon, Ronen
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [29] TOPOLOGY OF COMPLEX MANIFOLDS
    SRINIVAS.K
    CANADIAN MATHEMATICAL BULLETIN, 1966, 9 (01): : 23 - &
  • [30] SUB-RIEMANNIAN GEOMETRY OF STIEFEL MANIFOLDS
    Autenried, Christian
    Markina, Irina
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (02) : 939 - 959