CONDENSATION HEAT TRANSFER AND PRESSURE DROP OF R134A IN HORIZONTAL MICRO-SCALE ENHANCED TUBE

被引:0
|
作者
Gu, Zongbao [1 ]
Ma, Xiang [1 ]
He, Yan [1 ]
Ma, Lianxiang [1 ]
Li, Wei [2 ]
Kukulka, David J. [3 ]
机构
[1] Qingdao Univ Sci & Technol, Dept Mech & Elect Engn, Qingdao, Shandong, Peoples R China
[2] Zhejiang Univ, Dept Energy Engn, 38 Zheda Rd, Hangzhou 310027, Peoples R China
[3] State Univ New York Coll Buffalo, Mech Engn Technol, 1300 Elmwood Ave, Buffalo, NY USA
基金
中国国家自然科学基金;
关键词
Condensation; Heat transfer coefficient; Pressure drop; Enhanced tube; SMOOTH; EVAPORATION;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This study was performed to investigate the heat transfer and pressure drop of R134A during condensation inside a stainless steel micro-scale enhanced surface tube (EHT tube) and smooth tube. The tests were conducted at a saturation temperature of 45 degrees C, over the mass fluxes range of 100 to 200 kg/m(2)s, the heat fluxes of 14-25 kW/m(2), an inlet vapor quality of 0.8 and outlet vapor quality of 0.2. The heat length and inner diameter of the tested tube were 2 m and 11.5 mm. The micro-scale enhanced surface tube has complex surface structures composed of dimples and petal arrays background patterns. It can be observed the condensation heat transfer coefficients of the EHT tube is about 1.6-1.7 times higher than that of a stainless steel smooth tube. Enhancement of the EHT tube was achieved due to disruption of the boundary layer, secondary fluid generation, increasing fluid turbulence and heat transfer area. In addition, considering the friction pressure drop, the EHT tube produces the larger friction pressure drop, which is 1.05-1.20 times as compared to the smooth tube. Finally, the performance factors were performed to evaluate the enhancement effect of the EHT tube based on heat transfer coefficient-pressure drop evaluation criteria value (eta(1)) and heat transfer coefficient-area evaluation criteria value (eta(2)).
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Condensation heat transfer of R134a outside horizontal enhanced tubes - Effect of fin parameters
    Zhang, Dingcai
    Fan, Xiaowei
    Ma, Liangdong
    FIRST INTERNATIONAL CONFERENCE ON BUILDING ENERGY AND ENVIRONMENT, PROCEEDINGS VOLS 1-3, 2008, : 1476 - 1484
  • [22] Experimental investigation of the heat transfer of supercritical R134a in a horizontal micro-fin tube
    Wang, Dabiao
    Dai, Xiaoye
    Tian, Ran
    Shi, Lin
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2019, 138 : 536 - 549
  • [23] Condensation heat transfer on single horizontal smooth and finned tubes and tube bundles for R134a and propane
    Gebauer, Thomas
    Al-Badri, Alaa R.
    Gotterbarm, Achim
    El Hajal, Jean
    Leipertz, Alfred
    Froeba, Andreas Paul
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 56 (1-2) : 516 - 524
  • [25] Experimental study of R134A condensation heat transfer inside the horizontal micro-fin tubes
    Chen, Q
    Amano, RS
    Xin, MD
    HEAT AND MASS TRANSFER, 2005, 41 (09) : 785 - 791
  • [26] Experimental study of R134A condensation heat transfer inside the horizontal micro-fin tubes
    Q. Chen
    R. S. Amano
    M. D. Xin
    Heat and Mass Transfer, 2005, 41 : 785 - 791
  • [27] Refrigerant R134a condensation heat transfer and pressure drop inside a small brazed plate heat exchanger
    Longo, Giovanni A.
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2008, 31 (05): : 780 - 789
  • [28] Experimental study of R134a condensation heat transfer inside the horizontal micro-fin tubes
    Chen, QH
    Xin, MD
    Amano, RS
    ITHERM 2004, VOL 2, 2004, : 40 - 46
  • [29] Experimental investigation of heat transfer and pressure drop during condensation of R134a in multiport flat tubes
    Knipper, Paul
    Bertsche, Dirk
    Gneiting, Ronald
    Wetzel, Thomas
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2019, 98 : 211 - 221
  • [30] Heat transfer of R134a in a horizontal internally ribbed tube and in a smooth tube under super critical pressure
    Wang, Dabiao
    Tian, Ran
    Li, Lanlan
    Dai, Xiaoye
    Shi, Lin
    APPLIED THERMAL ENGINEERING, 2020, 173 (173)