Stabilization for the Wave Equation with Variable Coefficients and Balakrishnan-Taylor Damping

被引:16
|
作者
Ha, Tae Gab [1 ,2 ]
机构
[1] Chonbuk Natl Univ, Dept Math, Jeonju 561756, South Korea
[2] Chonbuk Natl Univ, Inst Pure & Appl Math, Jeonju 561756, South Korea
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2017年 / 21卷 / 04期
基金
新加坡国家研究基金会;
关键词
wave equation with variable coefficients; Balakrishnan-Taylor damping; asymptotic stability; ACOUSTIC BOUNDARY-CONDITIONS; ENERGY DECAY;
D O I
10.11650/tjm/7828
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the wave equation with variable coefficients and Balakrishnan-Taylor damping and source terms. This work is devoted to prove, under suitable conditions on the initial data, the uniform decay rates of the energy without imposing any restrictive growth near zero assumption on the damping term.
引用
收藏
页码:807 / 817
页数:11
相关论文
共 50 条
  • [31] General decay rate estimates for viscoelastic wave equation with Balakrishnan–Taylor damping
    Tae Gab Ha
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [32] General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, logarithmic nonlinearity and distributed delay terms
    Choucha, Abdelbaki
    Boulaaras, Salah
    Ouchenane, Djamel
    Beloul, Said
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (07) : 5436 - 5457
  • [33] Initial boundary value problem for a viscoelastic wave equation with Balakrishnan-Taylor damping and a delay term: decay estimates and blow-up result
    Gheraibia, Billel
    Boumaza, Nouri
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [34] Asymptotic stability of a viscoelastic problem with Balakrishnan-Taylor damping and time-varying delay
    Kang, Jum-Ran
    Lee, Mi Jin
    Park, Sun Hye
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (06) : 1506 - 1515
  • [35] Stability for extensible beams with a single degenerate nonlocal damping of Balakrishnan-Taylor type
    Cavalcanti, M. M.
    Cavalcanti, V. N. Domingos
    Silva, M. A. Jorge
    Narciso, V
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 290 : 197 - 222
  • [36] Asymptotic behavior of a Balakrishnan-Taylor suspension bridge
    Hajjej, Zayd
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (03): : 1646 - 1662
  • [37] Global existence and asymptotic behavior for a viscoelastic Kirchhoff equation with a logarithmic nonlinearity, distributed delay and Balakrishnan-Taylor damping terms
    Choucha, Abdelbaki
    Boulaaras, Salah
    Alharbi, Asma
    AIMS MATHEMATICS, 2022, 7 (03): : 4517 - 4539
  • [38] General decay for the viscoelastic wave equation for Kirchhoff-type containing Balakrishnan-Taylor damping, nonlinear damping and logarithmic source term under acoustic boundary conditions
    Mi Jin Lee
    Jum-Ran Kang
    Boundary Value Problems, 2025 (1)
  • [39] Uniform stability of a strong time-delayed viscoelastic system with Balakrishnan-Taylor damping
    Li, Haiyan
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [40] ON A SYSTEM OF NONLINEAR WAVE EQUATIONS WITH THE KIRCHHOFF-CARRIER AND BALAKRISHNAN-TAYLOR TERMS
    Bui Duc Nam
    Nguyen Huu Nhan
    Le Thi Phuong Ngoc
    Nguyen Thanh Long
    MATHEMATICA BOHEMICA, 2022, 147 (02): : 237 - 270