Lower bounds for the Laplacian spectral radius of graphs

被引:2
|
作者
Afshari, B.
Saadati, M. T.
Saadati, R.
机构
关键词
Laplacian matrix; Laplacian spectral radius; EIGENVALUES;
D O I
10.1016/j.laa.2021.08.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a graph of order nand with the Laplacian spectral radius lambda(G). For v(i) is an element of V, denote the set of all neighbors of viby Niand its number by d(i). The maximum degree of G is denoted by Delta(G). It is shown that if G is connected and Delta(G) < n - 1 then lambda(G) >= max {m(i)' + (1 + (m(i)' - 1)(2)/d(2,i) ) d(i)/m(i)' : v(i) is an element of V}, where m(i)'= Sigma(vivj is an element of E)(d(j)-vertical bar N-i boolean AND N-j vertical bar) d(i) and d(2,i) is the number of vertices at distance two from v(i). Also it is shown that lambda(G) >= max {(p(ij) + (1 - p(ij))(2)/p(ij) max{1, d(i) - 1}) x vertical bar N-i boolean OR N-j vertical bar : v(i)v(j) is an element of E, d(i) >= d(j)}, where p(ij)= e(N-i,N-j-N-i)/d(i)(vertical bar N-i boolean OR N-j vertical bar-d(i)), e(N-i, N-j-N-i) is the number of edges between N-i and N-j - N-i. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:136 / 142
页数:7
相关论文
共 50 条
  • [21] Sharp upper bounds for the adjacency and the signless Laplacian spectral radius of graphs
    Wu Xian-zhang
    Liu Jian-ping
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2019, 34 (01) : 100 - 112
  • [22] TWO SHARP UPPER BOUNDS FOR THE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF GRAPHS
    Chen, Ya-Hong
    Pan, Rong-Ying
    Zhang, Xiao-Dong
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2011, 3 (02) : 185 - 191
  • [23] Upper Bounds on the (Signless Laplacian) Spectral Radius of Irregular Weighted Graphs
    Xie, Shuiqun
    Chen, Xiaodan
    Li, Xiuyu
    Liu, Xiaoqian
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (04) : 2063 - 2080
  • [24] THE LAPLACIAN SPECTRAL RADIUS OF GRAPHS
    Li, Jianxi
    Shiu, Wai Chee
    Chang, An
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (03) : 835 - 847
  • [25] The Laplacian spectral radius of graphs
    Jianxi Li
    Wai Chee Shiu
    An Chang
    Czechoslovak Mathematical Journal, 2010, 60 : 835 - 847
  • [26] On the Laplacian Spectral Radius of Graphs
    Xu, Guanghui
    Xu, Changqing
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPPLICATIONS, VOL 1, 2009, : 164 - 167
  • [27] BOUNDS FOR SIGNLESS LAPLACIAN SPECTRAL RADIUS
    Nurkahli, Semiha Basdas
    Kabatas, Ulkunur
    Kizilca, Fatma
    JOURNAL OF SCIENCE AND ARTS, 2018, (03): : 631 - 644
  • [28] Some bounds on spectral radius of signless Laplacian matrix of k-graphs
    Zhang, Junhao
    Zhu, Zhongxun
    RAIRO-OPERATIONS RESEARCH, 2023, 57 (04) : 2267 - 2278
  • [29] On the distance Laplacian spectral radius of graphs
    Lin, Hongying
    Zhou, Bo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 475 : 265 - 275
  • [30] The Laplacian spectral radius of graphs on surfaces
    Lin, Liang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (04) : 973 - 977