A geometric generalization of field theory to manifolds of arbitrary dimension

被引:4
|
作者
Wiese, KJ [1 ]
Kardar, M
机构
[1] Univ GH Essen, Fachbereich Phys, D-45117 Essen, Germany
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
来源
EUROPEAN PHYSICAL JOURNAL B | 1999年 / 7卷 / 02期
关键词
D O I
10.1007/s100510050604
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We introduce a generalization of the O(N) field theory to N-colored membranes of arbitrary inner dimension D. The O(N) model is obtained for D --> 1, while N --> 0 leads to self-avoiding tethered membranes (as the O(N) model reduces to self-avoiding polymers). The model is studied perturbatively by a 1-loop renormalization group analysis, and exactly as N --> infinity. Freedom to choose the expansion point D, leads to precise estimates of critical exponents of the O(N) model. Insights gained from this generalization include a conjecture on the nature of droplets dominating the 3d-Ising model at criticality; and the fixed point governing the random bond Ising model.
引用
收藏
页码:187 / 190
页数:4
相关论文
共 50 条
  • [21] A GEOMETRIC MODEL OF AN ARBITRARY REAL CLOSED FIELD
    Spodzieja, Stanislaw
    PACIFIC JOURNAL OF MATHEMATICS, 2013, 264 (02) : 455 - 469
  • [22] GENERALIZATION OF GEOMETRIC PROGRAMMING WITH AN APPLICATION TO INFORMATION-THEORY
    SCOTT, CH
    JEFFERSON, TR
    INFORMATION SCIENCES, 1977, 12 (03) : 263 - 269
  • [23] Geometric measure theory and manifolds of nonnegative Ricci curvature
    Itokawa, Y
    Kobayashi, R
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1996, 72 (06) : 126 - 128
  • [24] FUNDAMENTAL GROUPS OF KAHLER MANIFOLDS AND GEOMETRIC GROUP THEORY
    Burger, Marc
    ASTERISQUE, 2011, (339) : 305 - +
  • [25] Null phase curves and manifolds in geometric phase theory
    Chaturvedi, S.
    Ercolessi, E.
    Morandi, G.
    Ibort, A.
    Marmo, G.
    Mukunda, N.
    Simon, R.
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (06)
  • [26] SOME PROBLEMS OF THE GRAVITATION THEORY FOR A SPACE OF ARBITRARY DIMENSION
    ROZENTAL, IL
    FILCHENKOV, ML
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1981, (04): : 102 - 104
  • [27] Quantization of the Maxwell field in curved spacetimes of arbitrary dimension
    Pfenning, Michael J.
    CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (13)
  • [28] Generalization of Bloch's theorem for arbitrary boundary conditions: Theory
    Alase, Abhijeet
    Cobanera, Emilio
    Ortiz, Gerardo
    Viola, Lorenza
    PHYSICAL REVIEW B, 2017, 96 (19)
  • [29] GENERALIZATION OF GLOBAL CLASS FIELD THEORY
    SEO, TK
    WHAPLES, G
    CANADIAN JOURNAL OF MATHEMATICS, 1969, 21 (03): : 609 - &
  • [30] A generalization of local class field theory
    Schilling, OFG
    AMERICAN JOURNAL OF MATHEMATICS, 1938, 60 : 667 - 704