Weighted composition operators on Orlicz-Sobolev spaces

被引:0
|
作者
Arora, Subhash C. [1 ]
Datt, Gopal [2 ]
Verma, Satish [1 ]
机构
[1] Univ Delhi, Dept Math, SGTB Khalsa Coll, Delhi 110007, India
[2] Univ Delhi, PGDAV Coll, Dept Math, Delhi 110065, India
关键词
D O I
10.1017/S1446788700037952
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an open subset P of the Euclidean space R", a measurable non-singular transformation T : Omega -> Omega and a real-valued measurable function u on R", we study the weighted composition operator uC(T) : f bar right arrow u . (f circle T) on the Orlicz-Sobolev space W-1,W-psi(Omega) consisting of those functions of the Orlicz space L-psi (Omega) whose distributional derivatives of the first order belong to L-psi (Omega). We also discuss a sufficient condition under which uC(T) is compact.
引用
收藏
页码:327 / 334
页数:8
相关论文
共 50 条
  • [41] Boundedness of functions in fractional Orlicz-Sobolev spaces
    Alberico, Angela
    Cianchi, Andrea
    Pick, Lubos
    Slavikova, Lenka
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 230
  • [42] Compactness results in inhomogeneous Orlicz-Sobolev spaces
    Elmahi, A
    PARTIAL DIFFERENTIAL EQUATIONS, PROCEEDINGS, 2002, 229 : 207 - 221
  • [43] VARIATIONAL-INEQUALITIES IN ORLICZ-SOBOLEV SPACES
    GOSSEZ, JP
    MUSTONEN, V
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1987, 11 (03) : 379 - 392
  • [44] DENSITY OF FINITE FUNCTIONS IN ORLICZ-SOBOLEV SPACES
    KLIMOV, VS
    SEMKO, ER
    SIBERIAN MATHEMATICAL JOURNAL, 1988, 29 (01) : 39 - 45
  • [45] AN IMBEDDING THEOREM FOR ANISOTROPIC ORLICZ-SOBOLEV SPACES
    HARDY, G
    THOMPSON, HB
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1995, 51 (03) : 463 - 467
  • [46] Quasiconvex variational functionals in Orlicz-Sobolev spaces
    Breit, Dominic
    Verde, Anna
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2013, 192 (02) : 255 - 271
  • [47] CONTINUITY OF THE SUPERPOSITION OPERATOR ON ORLICZ-SOBOLEV SPACES
    HARDY, G
    THOMPSON, HB
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1994, 50 (01) : 59 - 72
  • [48] A density result on Orlicz-Sobolev spaces in the plane
    Ortiz, Walter A.
    Rajala, Tapio
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 503 (02)
  • [49] Homogenization of obstacle problems in Orlicz-Sobolev spaces
    Marcon, Diego
    Rodrigues, Jose Francisco
    Teymurazyan, Rafayel
    PORTUGALIAE MATHEMATICA, 2018, 75 (3-4) : 267 - 283
  • [50] HOMOGENEOUS EIGENVALUE PROBLEMS IN ORLICZ-SOBOLEV SPACES
    Bonder, Julian Fernandez
    Salort, Ariel
    Vivas, Hernan
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2024, 63 (02) : 429 - 453