Mean-field variational approximate Bayesian inference for latent variable models

被引:40
|
作者
Consonni, Guido [2 ]
Marin, Jean-Michel [1 ]
机构
[1] Univ Orsay, Lab Math Bat 425, INRIA FUTURS Projects SELECT, F-91405 Orsay, France
[2] Univ Pavia, Dept Econ & Quantitat Methods, I-27100 Pavia, Italy
关键词
bayesian inference; Bayesian probit model; Gibbs sampling; latent variable models; marginal distribution; mean-field variational methods;
D O I
10.1016/j.csda.2006.10.028
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The ill-posed nature of missing variable models offers a challenging testing ground for new computational techniques. This is the case for the mean-field variational Bayesian inference. The behavior of this approach in the setting of the Bayesian probit model is illustrated. It is shown that the mean-field variational method always underestimates the posterior variance and, that, for small sample sizes, the mean-field variational approximation to the posterior location could be poor. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:790 / 798
页数:9
相关论文
共 50 条
  • [41] Approximate Bayesian Inference in Semiparametric Copula Models
    Grazian, Clara
    Liseo, Brunero
    BAYESIAN ANALYSIS, 2017, 12 (04): : 991 - 1016
  • [42] Transdimensional approximate Bayesian computation for inference on invasive species models with latent variables of unknown dimension
    Chkrebtii, Oksana A.
    Cameron, Erin K.
    Campbell, David A.
    Bayne, Erin M.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 86 : 97 - 110
  • [43] Variational Bayesian inference for network autoregression models
    Lai, Wei-Ting
    Chen, Ray-Bing
    Chen, Ying
    Koch, Thorsten
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 169
  • [44] VARIATIONAL BAYESIAN INFERENCE FOR PAIRWISE MARKOV MODELS
    Morales, Katherine
    Petetin, Yohan
    2021 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2021, : 251 - 255
  • [45] Extended Variational Message Passing for Automated Approximate Bayesian Inference
    Akbayrak, Semih
    Bocharov, Ivan
    de Vries, Bert
    ENTROPY, 2021, 23 (07)
  • [46] Stochastic Collapsed Variational Bayesian Inference for Latent Dirichlet Allocation
    Foulds, James
    Boyles, Levi
    DuBois, Christopher
    Smyth, Padhraic
    Welling, Max
    19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), 2013, : 446 - 454
  • [47] Scalable Mean-Field Sparse Bayesian Learning
    Worley, Bradley
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (24) : 6314 - 6326
  • [48] Approximate variational inference based on a finite sample of Gaussian latent variables
    Gianniotis, Nikolaos
    Schnoerr, Christoph
    Molkenthin, Christian
    Bora, Sanjay Singh
    PATTERN ANALYSIS AND APPLICATIONS, 2016, 19 (02) : 475 - 485
  • [49] Approximate variational inference based on a finite sample of Gaussian latent variables
    Nikolaos Gianniotis
    Christoph Schnörr
    Christian Molkenthin
    Sanjay Singh Bora
    Pattern Analysis and Applications, 2016, 19 : 475 - 485
  • [50] Spectral Latent Variable Models for perceptual inference
    Kanaujia, Atul
    Sminchisescu, Cristian
    Metaxas, Dimitris
    2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 142 - +