Multi-spectral tactical integrated scene generation capability using satellite imagery

被引:0
|
作者
Coker, Charles [1 ]
Willis, Carla [1 ]
Lt Tan Van [1 ]
Smith, Brian [2 ]
Destin, Phillip [3 ]
机构
[1] US Air Force, Res Lab, Munit Directorate, Eglin AFB, FL 32542 USA
[2] GSES L 3 Serv Inc, Shalimar, FL 32579 USA
[3] DCS Corp, Shalimar, FL 32579 USA
关键词
tactical; scene generation; geo-referenced; satellite; radiance; imagery;
D O I
10.1117/12.852342
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A multi-spectral tactical integrated scene generation capability using satellite terrain imagery is currently available using a synthetic predictive simulation code developed by the Munitions Directorate of the Air Force Research Laboratory (AFRL/RWGGS). This capability produces multi-spectral integrated scene imagery from the perspective of a sensor/seeker for an air-to-ground scenario using geo-referenced U.S. Geological Survey (USGS) Digital Terrain Elevation Data (DTED) and satellite terrain imagery. The produced imagery is spatially, spectrally, and temporally accurate. Using surveillance flight path and viewing angle, this capability has been interfaced with Microsoft Virtual Earth to extract terrain data of interest at the needed background resolution.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Improved segmentation and change detection of multi-spectral satellite imagery using graph cut based clustering and multiclass SVM
    Usha, S. Gandhimathi Alias
    Vasuki, S.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (12) : 15353 - 15383
  • [32] Wavelength independent texture for multi-spectral scene simulation
    Wang, CB
    Wang, ZY
    Peng, QS
    THIRD INTERNATIONAL SYMPOSIUM ON MULTISPECTRAL IMAGE PROCESSING AND PATTERN RECOGNITION, PTS 1 AND 2, 2003, 5286 : 717 - 722
  • [33] Multi-Spectral Complex Infrared Scene Projection Technology
    Zhuo, Li
    Gao Yanze
    Zhang Jinying
    ACTA OPTICA SINICA, 2023, 43 (15)
  • [34] Orthogonal Equations of Multi-Spectral Satellite Imagery for the Identification of Un-Excavated Archaeological Sites
    Agapiou, Athos
    Alexakis, Dimitrios D.
    Sarris, Apostolos
    Hadjimitsis, Diofantos G.
    REMOTE SENSING, 2013, 5 (12) : 6560 - 6586
  • [35] Automated Derivation of Bathymetric Information from Multi-Spectral Satellite Imagery Using a Non-Linear Inversion Model
    Su, Haibin
    Liu, Hongxing
    Heyman, William D.
    MARINE GEODESY, 2008, 31 (04) : 281 - 298
  • [36] Improved segmentation and change detection of multi-spectral satellite imagery using graph cut based clustering and multiclass SVM
    S. Gandhimathi Alias Usha
    S. Vasuki
    Multimedia Tools and Applications, 2018, 77 : 15353 - 15383
  • [37] DYNAC: A FRAMEWORK FOR THE DYNAMIC DERIVATION OF THE USLE C-FACTOR USING HIGH TEMPORAL MULTI-SPECTRAL SATELLITE IMAGERY
    Moeller, M.
    Gerstmann, H.
    Wurbs, D.
    Glaesser, C.
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 5072 - 5075
  • [38] Classification of Multi-Spectral Satellite Image Using Hierarchical Clustering Algorithms
    Kulkarni, Sushant
    Senthilnath, J.
    Benediktsson, Jon Atli
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 1664 - 1669
  • [39] DEM densification using SFS with single multi-spectral satellite image
    Chen, Zhe
    Sun, Tao
    Qin, Qianqing
    Zhang, Huaguo
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XIII, 2011, 8174
  • [40] MULTI-SPECTRAL SATELLITE IMAGE CLASSIFICATION USING GLOWWORM SWARM OPTIMIZATION
    Senthilnath, J.
    Omkar, S. N.
    Mani, V.
    Tejovanth, N.
    Diwakar, P. G.
    Shenoy, Archana B.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 47 - 50